Determination of the dielectric constant of non-planar nanostructures and single nanoparticles by Electrostatic Force Microscopy

Submitting author affiliation:
Hochschule Kaiserslautern, Zweibrücken, Germany

Beilstein Arch. 2022, 202233. https://doi.org/10.3762/bxiv.2022.33.v1

Published 10 May 2022

Preprint
cc-by Logo

Abstract

Electrostatic Force Microscopy has been proven to be a precise and versatile tool to perform quantitative measurements of the dielectric constants of nanoparticles and thin film structures. In this work, an alternative approach based on direct current (DC) linear lift mode is presented. The difference to conventional lift mode measurements is based on the elimination of topographical influences in electrostatic field measurements. Thus, the electrostatic potential penetrating the dielectric material remains constant to accurately predict field changes based solely on the dielectric properties. Measurements of polystyrene (PS), polylactide (PLA) and polymethyl methacrylate (PMMA) nanoparticles show that the presented technique can detect differences in dielectric constants based on material properties.

Keywords: nanoparticles; dielectric constant, atomic force micrscopy, electrostatic force microscopy, linear mode

How to Cite

When a peer-reviewed version of this preprint is available, this information will be updated in the information box above. If no peer-reviewed version is available, please cite this preprint using the following information:

Fuhrmann, M.; Musyanovych, A.; Thoelen, R.; Möbius, H. Beilstein Arch. 2022, 202233. doi:10.3762/bxiv.2022.33.v1

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

OTHER BEILSTEIN-INSTITUT OPEN SCIENCE ACTIVITIES