Silver nanoparticles nucleated in NaOH treated halloysite: a potential antimicrobial material.

Submitting author affiliation:
Departamento Acadêmico de Física, Universidade Tecnológica Federal do Paraná - UTFPR - Curitiba, Brazil, Curitiba, Brazil

Beilstein Arch. 2021, 202123. https://doi.org/10.3762/bxiv.2021.23.v1

Published 15 Mar 2021

Preprint
cc-by Logo

Abstract

Despite all recent advances in medical treatments, infectious diseases remain dangerous. This scenario has led to intense scientific research on materials with antimicrobial properties. Silver nanoparticles (Ag-NPs) are a well established solution in this area. The present work studied the nucleation of silver in halloysite substrates (HNT) modified by a NaOH chemical treatment. The resulting stabilized Ag-NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDS). The nucleation was characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Ag-NPs antimicrobial properties were investigated against \textit{E. coli} and \textit{S. aureus}. The potential of Ag-NPs for industrial application was tested by dispersing them into low density polyethylene (LDPE). The importance of the chemical affinity between matrix and additive was tested coating Ag-NPs with dodecanethiol, a non-polar surfactant. The resulting composites were characterized by scanning electron microscopy (SEM) and in terms of surface antimicrobial activity. The results demonstrate that Ag-NPs synthesized in this work are indeed antimicrobial, and that it is possible to imbue a polymeric matrix with the Ag-NPs antimicrobial properties.

Keywords: antimicrobial activity; silver nanoparticles; halloysite; DIO coating; nanocomposites;

Supporting Information

Format: PNG Size: 466.3 KB   Download

How to Cite

When a peer-reviewed version of this preprint is available, this information will be updated in the information box above. If no peer-reviewed version is available, please cite this preprint using the following information:

Matos, Y. B.; Romanus, R. S.; Torquato, M.; de Souza, E. H.; Villanova, R. L.; Soares, M.; Viana, E. R. Beilstein Arch. 2021, 202123. doi:10.3762/bxiv.2021.23.v1

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

OTHER BEILSTEIN-INSTITUT OPEN SCIENCE ACTIVITIES