Beilstein Arch. 2019, 2019115. https://doi.org/10.3762/bxiv.2019.115.v1
Published 07 Oct 2019
Understanding the dynamic behavior of materials under hypervelocity impact is of great importance to develop new materials or structures for protective applications. The present work gives insight into the damage characteristic of aluminum nanorod under hypervelocity impact based on atomistic simulations. First of all, the propagation of impact wave is found to experience a rapid decaying because of its release from the side surface, which leads to a complex three-dimensional stress wave and two tension regions inside the nanorod. The damage mode under this tension state is found to be very different from the classical spallation. Due to the interaction of two release waves from the side and end surfaces, a temporary spall damage is observed and its initial tensile strength is close to that of bulk material. However, that early spall damage does not develop into a complete spall fracture. More importantly, all generated voids are found to be closed eventually after their coalescence. Furthermore, the mass continues expanding outward from the impact plane and finally causes a radial annular fragmentation. The annular fragmentation shows a clear crystalline direction dependence for low impact velocities. The number and the size of final fragments are found to follow a power law relationship for all impact velocities.
Keywords: nanorod; hypervelocity impact; damage; atomistic simulation
When a peer-reviewed version of this preprint is available, this information will be updated in the information box above. If no peer-reviewed version is available, please cite this preprint using the following information:
Wu, Y.-C.; Shao, J.-L.; Zhan, H. Beilstein Arch. 2019, 2019115. doi:10.3762/bxiv.2019.115.v1
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and
Zotero.
© 2019 Wu et al.; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the authors and source are credited.
The license is subject to the Beilstein Archives terms and conditions: (https://www.beilstein-archives.org/xiv/terms)