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Abstract7

Background: : Atomic resolution scanning probe microscopy, and in particular scanning tun-8

nelling microscopy (STM) allows for high spatial resolution imaging, and also spectroscopic anal-9

ysis of small organic molecules. However, preparation, and characterisation of the probe apex in10

situ by a human operator is one of the major barriers to high throughput experimentation, and to re-11

producibility between experiments. Characterisation of the probe apex is usually accomplished via12

assessment of the imaging quality on the target molecule, and also the characteristics of the scan-13

ning tunnelling spectra (STS) on clean metal surfaces. Critically for spectroscopic experiments,14

assessment of the spatial resolution of the image is not sufficient to ensure a high quality tip for15

spectroscopic measurement. The ability to automate this process is a key aim in development of16

high resolution scanning probe materials characterisation.17

Results: In this paper, we assess the feasibility of automating the assessment of imaging quality,18

and spectroscopic tip quality, via both machine learning (ML) and deterministic methods (DM) us-19

ing a prototypical Tin Phthalocyanine (SnPc) on Au(111) system at 4.7 K. We find that both ML20

and DM are able to classify images and spectra with high accuracy, with only a small amount of21

prior surface knowledge. We highlight the practical advantage of DM not requiring large training22

datasets to implement on new systems and demonstrate a proof-of-principle automated experiment23

that is able to repeatedly prepare the tip, identify molecules of interest and perform site specific24
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STS experiments using DM, in order to produce large numbers of spectra with different tips suit-25

able for statistical analysis.26

Conclusion: Deterministic methods can be easily implemented to classify the imaging and spec-27

troscopic quality of a STM tip for the purposes of high resolution STM and STS on small organic28

molecules. Via automated classification of the tip state, we demonstrate an automated experiment29

that can collect high number of spectra on multiple molecules without human intervention. The30

technique can be easily extended to most metal-adsorbate systems, and is promising for the devel-31

opment of automated, high-throughput, STM characterisation of small adsorbate systems.32

Keywords33

STM; STS; Machine Learning; Automated; spectroscopy;34

Introduction35

STS extends the capability of STM beyond topographic imaging, allowing for the direct measure-36

ment of the electronic properties of surfaces and molecules with atomic precision. This opens up37

the ability to map the local density of states (LDOS) of a sample with high spatial resolution [1-3].38

Peaks within a map of the LDOS correspond to increases in conductance at specific bias values, re-39

vealing the energy levels of key features (e.g. molecular orbitals in the case of molecular samples)40

within the material.41

As for STM imaging, the sharpness and overall tip shape is crucial in optimising the spatial res-42

olution of STS measurements; sharp tips result in localised tunnelling through a single position,43

whereas blunt or misshaped tips cause averaging of contributions over larger areas, reducing the44

spatial resolution and potentially blending the electronic features between different sites. However,45

even for tips with high spatial resolution, it is known that different tip structures and probe termina-46

tions are known to influence these results [4-7].47

STS measurements are the result of an integration over the available density of states (DOS) in48

both the tip and the sample, with the current measured therefore being proportional to the con-49

volution of two. To isolate the DOS of the sample, it is crucial that the tip has a nominally “flat”50
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DOS, which is typically achieved by using a purely metallic tip. However, most tips do not demon-51

strate a perfectly flat LDOS as they have a complex electronic structure governed by the geometry52

of the metallic cluster at the tip apex [8-12]. Non-metallic contaminants can also strongly perturb53

the electronic structure of the tip.54

Methods of optimising the probe state for ideal STS are slow and laborious, involving indentation55

into a metal surface and bias pulses applied to the tip, manually checking spectra and imaging af-56

ter each probe shaping attempt. The automation of this process could result in a more rapid and57

reproducible method for performing spectroscopy measurements.58

To classify the state of the probe for STS experiments, spectra are usually taken over bare areas of59

a metallic substrate. On coinage metal surfaces, these 𝑑𝐼
𝑑𝑉

spectra typically exhibit a characteristic60

feature corresponding to the surface state, which appears as a step function around a specific bias61

value, which for the Au(111) surface appears at around −0.48 V [13,14].62

One notable attempt to automate this classification using machine learning (ML) was carried out by63

Wang et al. [15]. This work aimed to classify the state of a STM tip based on STS measurements64

of the Au(111) surface. Using a total of 1789 archived 𝑑𝐼
𝑑𝑉

spectra, a ML model was trained which65

aimed to classify new spectra into one of five categories, based on the similarity of the spectra to an66

idealised surface state.67

This schema achieved final precision in classification of 84%, and a recall of 74%. Similarly to68

image classification in scanning probe microscopy (SPM) [16-18], the availability of such a large69

amount of data for training is usually very low, making ML based classifiers troublesome to train.70

In addition to the lack of data, ML models require careful labelling and a high level of knowledge71

from the labeller to be able to train such a model. Switching to a new substrate system is likely to72

require retraining of the model, and furthermore, even after a successful training, it is still often un-73

clear what the model is learning from the input data, a problem which leads to these models being74

referred to as a ‘black box’. Because of these limitations, there is a strong case to develop methods75

which do not rely on ML, circumventing these drawbacks whilst still able to make precise classifi-76

cations of the tip quality for use in automation.77
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In the following work, we use the prototypical system of Tin Phthalocyanine (SnPc) on Au(111)78

to investigate the feasibility of a DM automated classifier, and compare it to ML methods. This79

molecular system has the advantage that the SnPc adsorbs on the surface in two distinct configu-80

rations, one with the tin atom facing up (SnUp), and the other with the tin facing down (SnDown)81

(Figure 1), providing a variety of molecular configurations to challenge the automated molecular82

identification.83

In addition to the classification of the probe quality based on the surface state, we use a DM based84

cross-correlation (CC) feature finding method [19] in order to also assess the imaging quality of the85

tip, and also automatically locate various molecules on the surface. Combining these methods, it is86

possible to conduct a fully automated experiment, where a large number of STS measurements can87

be obtained over various molecules automatically, with optimised tips and the quality of the spectra88

and image assessed automatically.89

Methods90

Figure 1: a) Structure of tin phthalocyanine (SnPc). Side-on view of SnPc, illustrating its non-
planar nature in the b) SnUp and c) SnDown configurations. d) and e) show constant current STM
images of the SnUp and SnDown configurations respectively, taken at 5 K, −100 mV, 50 pA.
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Experimental details91

We used a third generation commercial low temperature (LT) STM NC-AFM instrument (Scienta92

Omicron GmbH) operating in UHV (base pressure ≤ 5×10−11 mbar) cooled to 5 K. Gold and silver93

crystals (spl.eu) were prepared via repeated sputter-anneal cycles, sputtering under an Argon pres-94

sure of ∼ 5× 10−5 mbar, with a beam energy of 1.5 kV for 30 minutes, measuring a drain current of95

∼ 7.0 𝜇A, before annealing at 500 ◦C for 30 minutes and then placed into the scan head for imag-96

ing. Platinum iridium STM tips were used throughout this work and were prepared by standard97

STM methods (voltage pulses, controlled contacts with the sample) until good atomic resolution98

was obtained in STM feedback.99

SnPc was deposited onto the Au(111) surface using a home-built evaporator, where the powdered100

source material is contained within a glass crucible using glass wool, around which a coil of tan-101

talum wire is wound, providing a source of heat for the crucible. The target temperature for SnPc102

deposition was 360 ◦C, once reached, the cryostat shields were opened for 1 hour, before closing103

and checking the coverage in STM. Once deposited, the sample was cold annealed to room tem-104

perature, which has the effect of driving the molecules preferentially to the “elbow” sites of the105

herringbone structure.106

An STS spectrum (differential conductance) can be obtained in practice using one of two methods.107

Both begin by positioning the STM tip at a desired lateral position on the surface, whilst scanning108

in STM feedback. At this point, the feedback loop is disabled, keeping the tip-sample distance con-109

stant throughout the spectroscopy measurement. The voltage is then swept through a range of val-110

ues whilst measuring the current, which is obtained as a function of the varying voltage, 𝐼 (𝑉). This111

curve can then be differentiated with respect to the voltage to obtain the differential conductance,112

𝑑𝐼
𝑑𝑉

, spectra.113

Alternatively, the derivative signal, 𝑑𝐼
𝑑𝑉

, as a function of voltage, can be directly measured using114

the lock-in technique. In this method, an AC signal is generated by applying a small modulation115

voltage, 𝑉𝑀𝑐𝑜𝑠(𝜔𝑡), to the bias. Due to this modulation, the measured current is expressed as116
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𝐼 (𝑡) = 𝑓 (𝑉 +𝑉𝑀𝑐𝑜𝑠(𝜔𝑡)) (1)117

Where 𝑉𝑀 is the modulation amplitude and 𝜔 is the frequency. Applying this modulation around118

a central voltage, creates a corresponding modulation in the measured tunnel current, with an am-119

plitude proportional to the gradient of the 𝑑𝐼
𝑑𝑉

curve at that bias. Therefore, once the tip is in posi-120

tion, the bias can be swept through a range, whilst applying the modulation. The resultant current121

can then be detected by a lock-in amplifier, where its amplitude for small values of 𝑉𝑀 is propor-122

tional to 𝑑𝐼
𝑑𝑉

, therefore directly measuring the differential conductance of the sample. Throughout123

the work presented here, the conductance was measured directly using the lock-in technique.124

Results125

To create the ML based classification models needed for this work, a large amount of data was126

needed in the form of STS spectra taken with a variety of different tip shapes and configurations.127

The process of the dataset generation was performed in a manner similar to that described in128

Barker et al. [19], with some minor alterations, as described below.129

The process of the automated dataset generation is shown in Figure 2. One addition to this method130

compared to the automated data gathering method described in Barker et al. [19] is the addition131

of I(z) classifications prior to performing imaging to ensure a tunnelling junction. This acts as a132

rapid “pre-filtering” step, eliminating tips that do not show a stable tunnelling junction (and hence133

are not suitable for STS) without the need to perform a complete image to characterise the tip. The134

classification of the state of the probe based on imaging is performed, via the CC method, as a key135

feature of a “good” tip for STS is also the sharpness of the probe, in order to ensure high spatial136

resolution in the acquired data. Further details on the CC and I(z) classification as implemented for137

the SnPc models is provided in the online supporting information.138

Once the imaging classification is complete, the I(z) classification is performed again to check that139
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a tip change did not occur during the scan. The obtained topograph is then analysed to find both140

a large area of clean metal substrate, over which the I(V) spectra can be obtained, and to find the141

location of the molecules in various configurations, over which additional I(V) spectra are taken.142

After completing this data gathering step, the tip moves away from the imaging area for a tip prepa-143

ration event, in order to change the apex substantially before repeating the entire process to col-144

lect another dataset with a different tip. Throughout, if the tip is classified as “bad” in either of the145

I(z) classifications or the CC based imaged classification, the script moves onto a tip preparation146

event. If the tip fails in being classified as “good” more than a set number of times in a row, the147

tip is moved away macroscopically, under the assumption that the current area of the surface is not148

suitable for classification; this typically occurs due to the area being damaged from prior tip prepa-149

ration, or the absence of an SnUp molecule in the frame which is used in the CC classification of150

the image.151

The CC classification is carried out as described in Barker et al. ([19]), with the reference image152

used being a cropped image of an SnUp molecule as is shown in Figure 1d. SnUp molecules were153

chosen for classification as in this configuration, the Sn atom in the molecule presents a higher as-154

pect ratio than in the SnDown configuration, and so is more sensitive to the sharpness of the tip.155

Using this method with a threshold of > 0.98, the model was able to reliably generate and identify156

sharp tips.157

Dataset summary158

Using the data generation method described above, we obtained at total of 2604 individual spec-159

tra on the bare Au(111) surface 86 to use for our classification models. In order to use this data160

for training and evaluation of models, the dataset required labelling. We note that labelling of the161

dataset is non-trivial, as for ML models the model can only attempt to ‘learn’ to evaluate spectra162

based on the ‘ground truth’ provided by the labelling.163

Labelling was carried out using a similar process to Barker et al. [19]. A custom Python script was164

written with a graphical interface. The script would show each spectra individually, with a choice165

of four labels depending on the visibility of the surface state (SS): SS “good”, SS “step visible”, SS166
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“peak visible” and SS “not visible”. When classifying the data, the region around the surface state167

step was focused on, with the “good” label being attributed to a spectra where the step was clearly168

visible at the correct position, with few features before and after the step.169

Whilst it was clear which data fell into each category, we note that even the data with the most170

visible surface state contained a background slope, as seen in Figure 3c. This slope most likely171

arises from a macroscopic property of the tip that was not removed by the moderate tip treatment172

steps used during the automated process, which did not include aggressive treatment such as high173

current field emission. Our data were therefore classified with this trend in mind, with the final174

“good” classifications often containing a trend in the < −0.5 V region. The SS “step visible” label175

was given to spectra whose curves show the step in the correct position, but where a general trend176

(slope) was also visible throughout the data. The SS “peak visible” label applied to spectra where177

there was an apparent feature at the correct position for the step, but not necessarily a step, and the178

final SS “not visible” label was given to spectra where no feature resembling the surface state could179

be observed. A representative sampling of spectra from each labelling category are shown in Fig-180

ures 3 and 4, with all spectra obtained shown in the online supplementary information S2.181

For the final classification, the SS “good” and SS “step visible” categories were combined into a182

single “good” category, and the SS “not visible” and SS “peak visible” were combined into a “bad”183

category. This was done to allow for a simple binary classification on the basis that further dis-184

tinction between the classes is unlikely to improve the final model, and would greatly increase the185

complexity of the problem.186

Table 1 shows the number of spectra in each category after the labelling step. For ML training, the187

data were split into training, validation and test sets at a ratio of 70:10:20. This left 1823 spectra for188

training, 260 for validation and 521 for final testing.189
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Table 1: Number of spectra in each category.

Labels Count
SS “good” 384
SS Step Visible 482
SS Peak Visible 1169
SS Not Visible 569
Binary “good” 866
Binary “bad” 1738

Classification Methods190

Machine Learning Classifier191

With the labelling completed, it was possible to train a series 1D convolutional neural networks192

(CNNs). In total, 72 models were trained, varying the number of convolutional layers between 1−3,193

the number of dense training layers between 1 − 3, the number of kernels in the first convolutional194

layer (32 and 64 kernels were used, doubling in successive layers), kernels of sizes 3×3 or 5×5, and195

dropout layers with rates of either 0.3 or 0.5, including all combinations of these. The training was196

carried out on the training dataset containing 1823 spectra, validating the model after each epoch197

on the validation set of 260.198

After training, each of these models were evaluated on a test set of 521 spectra, with their final ac-199

curacies, precisions and recalls compared. We note the recall is defined as the percentage of all200

data labelled as “good”, which is then also classified as “good”. This metric therefore places more201

weight on false negatives than the precision metric and is also not as largely skewed by imbalanced202

datasets as the accuracy metric.203

The model which achieved the best balance between the three metrics was one which contained204

2 convolutional layers starting with 5 × 5 kernels, 32 in the first layer and 64 in the second, a sin-205

gle dense training layer, followed by a dropout rate of 0.3. The architecture of this model is shown206

schematically in Figure S2. This achieved an overall accuracy of 86%, a precision of 85% and a207

recall of 70%.208
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Deterministic Classifier209

For the deterministic classifier, we required a method which is able to adapt to the entire dataset210

with a clear set of rules, outputting a metric describing how close any individual spectra is to an211

idealised surface state spectra. To this end, we implemented a simple model to calculate the dif-212

ference between the surface state step at −0.48 V with a perfect step function, both normalised be-213

tween 0 − 1.214

In principle, for a “ideal” metallic tip, the spectra would appear completely flat on either side of215

the step function. However, as noted above, the majority of the data we acquired were not com-216

pletely flat and showed a noticeable slope even when the SS was clearly visible. Therefore, in or-217

der to make a comparison between these tips and the ideal step function, additional processing is218

needed.219

Firstly, the spectra were cropped to remove features outside of the categorisation window, which220

for this dataset was the bias range −0.55 V → 0.5 V. From here, any general trend/slope visible in221

the data needs to be found and subtracted from the step. Commonly in our data, it seems that the222

trend is a linear offset in the 𝑑𝐼
𝑑𝑉

, and hence a linear function after the step can be fit to the data, and223

then subtracted from the original spectrum. The specific location of the turning point of the each224

spectrum is obtained by finding the minimum of the differential of the curve within a small range225

around −0.48 V, and the step is assumed to be contained within the categorisation range, follow-226

ing this determined turning point. From this, a linear function is fit to the window, an example of227

which is shown for both a “good” and “bad” classified tip in Figure 5a) and c) respectively.228

Once the linear trend is found, it is subtracted from the original spectrum, the result of which is229

shown in Figure 5b and d. For a “good” spectrum, the resultant curve should appear roughly as a230

step function, and so by direct comparison to a perfect step function, starting at the turning point231

found earlier, a deterministic classification measure can be made. The specific metric output as the232

difference between these two curves is the root mean squared (RMS) error between the two, which233

is described by Equation 2234
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𝑅𝑀𝑆 =

√√
𝑛∑︁
𝑖=1

( �̂�𝑖 − 𝑦𝑖)2 (2)235

Here, �̂� are the perfect step function data points, and 𝑦 are the spectra for classification. To evaluate236

the optimal thresholds for classification, a stacked histogram was plotted, showing the spread of the237

RMS in each category. This histogram is shown in Figure 6. From this, the final threshold chosen238

< 0.25, with all spectra resulting in a value within this range classified as “good”.239

Using this method, the deterministic model was able to achieve an overall accuracy of 82%, a pre-240

cision of 86% and a recall of 53% when evaluated on the same test set used for the ML model.241

Results and Discussion242

Both the deterministic and ML based models were tested on the same isolated test set of 521 spec-243

tra, with the final results as given in Table 2. Both models achieve very similar accuracies and pre-244

cisions, however the recall for the deterministic model is significantly lower than in the ML model.245

In practise, this lower recall would mean that more tips which a human may classify as “good”246

would be misclassified as “bad”, slowing down the overall tip preparation process. However, since247

the precisions of both the ML and deterministic models are very similar, the probability of an auto-248

mated tip preparation script exiting with a “bad” tip would be roughly the same using either model.249

Since both models show comparable results in the precision of the final classification, the main ad-250

vantage to using the deterministic model over ML is that the classifier requires much less labelled251

data for its creation, and hence is easier to apply to a new system.252

Our ML accuracies are consistent with the prior work undertaken by Wang et al. [15]. Their high-253

est ML based classifier which was able to achieve a precision of 84% and a recall of 74%, whereas254

our DM based results are substantially better than the DM approach they trialled which used corre-255

lation based metrics, and only achieved a final precision of 41% and a recall of 53% (no accuracies256

were given for this work).257
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It should be noted, however, that Wang et al. attempted to make a classification between five differ-258

ent labels of spectra, whereas our dataset was split into a binary “good” or “bad” before training. In259

general, binary classifiers are expected to achieve higher accuracies as the differences between the260

two categories are less subtle.261

Table 2: Table showing the accuracy, precision and recall obtained using deterministic and ML
models to classify probe tips based on spectroscopy measurements.

Deterministic ML
Accuracy 82% 86%
Precision 86% 85%
Recall 53% 70%

Automated Experiment Discussion262

In addition to automatically classifying the tip quality via STS on the Au(111) substrate, the script263

automatically located each SnPc molecule on the Au(111) surface, identified the different config-264

urations of the molecule, and carried out lock-in 𝑑𝐼
𝑑𝑉

measurements over the centre of each. In this265

section, we will discuss the STS data taken on the molecules, discuss the impact on the STS data266

quality due to the quality of the tip and highlight the advantages of automated assessment of tip267

quality and statistical categorisation of the data in STS.268

Molecule location and identification269

Once a series of Au(111) surface spectra had been obtained for use in the classifier training, the270

script continued on to obtain STS measurements over the centre of each located SnPc molecule,271

whilst also distinguishing between the two configurations (SnUp and SnDown) prior to measure-272

ment. The identification of each molecular configuration was determined using the CC method273

with two separate reference images as shown in Figure 1d-e.274

For the final distinctions on the Au(111) surface, the CCR thresholds used for the SnUp and275

SnDown molecules were 0.983 and 0.980 respectively. Using these thresholds on a small test set276
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of 13 images, the script was able to locate the positions of SnUp molecules with a 100% accuracy277

and precision, whereas on the SnDown the accuracy achieved was 95% with a precision of 96%.278

Once located, lock-in 𝑑𝐼
𝑑𝑉

curves were obtained over the central atom of each molecule located, us-279

ing the same −1.5 V to 1.5 V range, as for the bare surface.280

Note on SnPc Switching Instability281

The adsorption of SnPc on coinage metal substrates is well studied, and the molecule is known to282

undergo an irreversible switch from the SnUp to the SnDown state on the Ag(111) surface [20] un-283

der hole injection. This is usually carried out intentionally by positioning the tip over the centre of284

an SnUp molecule, and applying a bias pulse via the tip of < −1.9 V. On injection, the Sn atom285

within the molecule is transiently oxidised to Sn3+, which favours a new position closer to the sur-286

face, where the atom binds to the Ag(111), at which point charge transfer from the substrate to the287

molecule will return it to its neutral state [20].288

Whilst carrying out bias spectroscopy over these SnPc molecules, it was found that a switch could289

occasionally be induced, even if the bias range used did not reach −1.9 V. With moderate negative290

bias (e.g., −1.5 V) a switch would commonly occur and even with parameter adjustments to reduce291

the probability of switching (i.e. reduced integration times), there was still a chance that the switch292

would be induced, as can be seen in Figure S3.293

In the automated experiment, an image would be taken, the molecules located based on this image,294

and then spectra would be obtained, saving each spectra with a label indicating which configura-295

tion of molecule the spectra was taken over. Unfortunately, due to this switching occurring over296

specifically the SnUp molecules, spectra labelled SnUp had the potential to be unreliably labelled.297

Additionally, it was observed that these switches could occur at the start of the measurement in the298

initial setting of the bias, or during the bias sweep itself, meaning identifying if a switch had oc-299

curred could not be reliably inferred from simple analysis of the STS spectra. For this reason, the300

results shown in the next section will only consider spectra taken over the SnDown configuration,301

as the labelling of these was reliable.302
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Results303

Using our STS spectra surface state classification method as described previously, we were able304

to process the entire dataset collected, and categorise the spectra taken on molecules as being ac-305

quired with either a “good” tip, or with a “bad” tip.306

Throughout the data gathering, a total of 86 images (and so probe tips) passed the 𝐼 (𝑧) and CCR307

pre-classification steps and were used to obtain molecular STS measurements. Of these 86 tips,308

30 were classified as “good” and 56 as “bad”, based on the analysis of the final STS spectra on309

Au(111). These 30 “good” tips were used to obtain spectra over a total of 49 SnDown molecules.310

The mean of these curves is shown in Figure 7, where it can be clearly seen that there is a peak at311

roughly 0.8 V which is not present in the bare surface spectra seen in Figure 3c.312

Previous STS data of SnDown molecules show a clear increase in conductance at both −0.85 V and313

0.75 V when imaging at a setpoint of 50 pA [21]. These peaks in conductance correspond to the314

lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO)315

respectively. The cited work, however, was carried out on the Ag(111) surface, as opposed to316

Au(111) used here, which could explain the slight shift in the position of the HOMO from the lit-317

erature value of 0.75 V to our consistent measurement of roughly 0.8 V. In addition, the work also318

suggests a current dependence on the position of the HOMO, which could be a contributing factor319

to the difference.320

When comparing the “good” 𝑑𝐼
𝑑𝑉

spectra taken over the molecules (Figure 7) to the binary “good”321

bare surface spectra (Figure 3c), the surface state and general increase in conductance at biases be-322

low −0.5 V can be seen in both. However, unlike the HOMO, which is clearly visible in the molec-323

ular 𝑑𝐼
𝑑𝑉

, the LUMO is not visible at the expected bias value of −0.85 V. This is possibly due to324

the peak being obscured by the shoulder in the negative portion of the spectra. Comparing the re-325

gion between −1.5 and −0.5 V in both spectra, it can be seen that the mean curve for the molecular326

spectra contains an additional feature which is not present in the mean bare surface state spectrum.327

The features contained within this could contain the LUMO, but this is difficult to ascertain without328

completely deconvolving the tip and sample LDOS.329
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Figure 8 shows the mean and standard deviation of the 𝑑𝐼
𝑑𝑉

spectra taken over SnDown molecules330

taken with a “bad” tip. By comparing this to Figure 7 it is clear that the HOMO peak at 0.8 V is331

much less prominent. In addition to this, the features throughout the spectra have become less evi-332

dent. This clear difference between the molecular STS taken with a “good” and “bad” tip, with the333

former showing expected features, reinforces that the tip state classification was successful in pro-334

ducing higher quality spectra, and highlights the importance of appropriately charactering the tip335

state before STS experiments.336

A clear advantage to performing automated experiments with a large number of different tips and337

over a large number of molecules in different surface positions, is that statistically, variations in the338

spectra due to the changes in the tip or small changes in the molecular adsorption, will be averaged339

out, and better approach those from ensemble techniques. As can be seen in both Figures 7 and 8,340

there is a substantial variation in the individual spectra around the mean curve. This is most likely341

due to variations in the quality of the tip, or slight differences in the molecule itself. However, with342

a large enough aggregate of different tips, and taking STS measurements over different molecules,343

when averaged, these small variations should be dominated by the consistent features present in all344

the data. This can be seen particularly well in Figure 7, where some of the individual molecular345

spectra (grey curves), which here were all taken with tips classified as “good”, show a featureless346

region around the HOMO, whilst others clearly show a strong peak. With individual spectra, it is347

possible that specific features in the 𝑑𝐼
𝑑𝑉

could remain unobserved due to spurious problems with the348

tip.349

For a human operator, taking a large number of spectra, with different, yet still “good” tips, on dif-350

ferent instances of the same molecule is extremely time consuming. However, with the entire pro-351

cess being automated, this can be carried out very simply, and without any need for constant moni-352

toring.353

We note that while we collected data using both types of tip in order to highlight the differences354

in quality, in a real use case data collection would be improved by using the proposed method of355

classifying the tip based on a 𝑑𝐼
𝑑𝑉

spectrum taken over the bare surface, such that the script would356
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only take molecular spectra using probes which have been classified as “good” based on the surface357

state spectra. An example flow diagram, with data taken from a generation run where the surface358

state spectrum was classified as “good” is shown in Figure 9.359

Conclusion360

We have shown that it is possible to perform a fully automated experiment, carrying out STS mea-361

surements over targeted areas of specific organic molecules, including the ability to modify and362

characterise the state of the tip, by both analysis of its spectroscopic characteristics, and imaging363

quality, without the use of machine learning. This enables the ability to obtain a large number of364

spectra over various features on a surface, with a variety of characterised tip states, without the365

need for an operator to be present, and to perform statistical analysis of the spectroscopic data, via366

the automated labelling of the state, and location of the spectrum.367

Importantly, the ability to carry this out without machine learning means that this method can be368

easily adapted to different adsorbate/substrate systems without the need for extensive data collec-369

tion to train ML models. This methodology can aid in the rapid characterisation of new materials370

via automated probing of different features in a system, taking numerous measurements over differ-371

ent areas, only requiring an operator once the experiment is complete, to process the resultant data372

for analysis.373
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Figure 2: Schematic for the automated data gathering script. The script starts by taking an initial
I(z) spectra, a), which is classified based on its exponential dependence. If the I(z) is classified as
“good”, the script then obtains a scan of a specific area, b), followed by a CC based classification,
c). If the CC image classification determines the tip to be “good”, the script moves onto another
I(z) classification, d), followed by an analysis step to find a clean substrate area, e). Using the area
found in e), the script obtains 15 I(V) spectra over different positions, f). The script then locates
the different configuration of molecules present in the scan, g), before obtaining I(V) spectra over
the centre positions of each molecule, h). In the classification steps a), c) and d), if the tip is classi-
fied to be “bad”, the script will move on to either an in situ tip preparation step, j), or if the number
of shaping attempts without a “good” tip has exceeded a pre-determined threshold, i), the tip is
moved away macroscopically, k), under the assumption that the area is not suitable for classifica-
tion. Throughout the schematic, green arrows show positive classifications and red arrows indicate
negative classifications.
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Figure 3: Samples of 50 normalised spectra taken over the clean Au(111) surface, mean (blue line)
and standard deviation (shaded area) for a) Surface state step visible, b) surface state “good” and c)
binary “good” labels.

19



Figure 4: Samples of 50 normalised spectra taken over the clean Au(111) surface, mean (blue line)
and standard deviation (shaded area) for a) Surface state peak visible, b) surface state not visible
and c) binary “bad” labels.
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Figure 5: a) and b) show the categorisation window on a “good” and “bad” spectra respectively.
The red crosses show the automatically located turning point of the step, and the dashed gray lines
show the linear fit found past the step. b) and d) show the spectra in a) and b) with their respective
linear fits subtracted. The black dashed curves show the ideal surface state step function.
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Figure 6: Stacked histogram made from labelled spectra, calculating the RMS error between each
processed spectrum and an ideal step function. a) shows the full range of RMS, with b) showing
the values between 0.1 and 0.4.

Figure 7: Gray curves show 49 normalised STS measurements taken over the centre of SnDown
molecules taken with a “good” tip. Blue curve shows the mean and the standard deviation is shown
in shaded purple.
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Figure 8: Gray curves show 71 normalised STS measurements taken over the centre of SnDown
molecules taken with a “bad” tip. Blue curve shows the mean and the standard deviation is shown
in shaded purple.
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Figure 9: Example flow of an automated spectroscopy experiment taken over various SnPc
molecules on the Au(111) surface. a) Initial 𝐼 (𝑧) measurement is taken, where an exponential de-
pendence is observed and so moves onto imaging, b). The tip is then classified to be “good” based
on imaging, and so a clean area of the substrate is located (marked by a green cross), where a sur-
face STS measurement is taken, c). This is then classified to be “good”, at which point the vari-
ous orientations of SnPc are located (SnUp in pink boxes and SnDown in blue boxes), where STS
measurements are taken as shown in d)-g). d)-e) correspond to measurements taken over SnUp
molecules, while f)-g) correspond to SnDown. The script would then change the tip and repeat the
steps, over different areas, varying the tip after each set of STS measurements (formed through in
situ tip preparation).
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