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Abstract7

Background: In the realm of food industry, the choice of non-consumable materials used plays8

a crucial role in ensuring consumer safety and product quality. Aluminum is widely used in food9

packaging and food processing applications, including dairy products. However, the interaction10

between aluminum and milk content requires further investigation to understand its implications.11

Results: In this work, we present the results of multiscale modeling of the interaction between var-12

ious surfaces (100,110,111) of FCC aluminum with the most abundant milk proteins and lactose.13

Our approach combines atomistic molecular dynamics, a coarse grained United Atom (UA) model,14

and kinetic Monte Carlo (KMC) simulations to predict the protein corona composition in the de-15

posited milk layer on aluminum surfaces. We consider a simplified model of the milk, which was16

composed of the six most abundant milk proteins found in natural cow milk and lactose, which is17

the most abundant sugar found in dairy. Through our study, we ranked selected proteins and lactose18

adsorption affinities based on their corresponding interaction strength with aluminum surfaces and19

predicted the content of the naturally forming biomolecular corona.20

Conclusion: Our comprehensive investigation sheds light on the implications of aluminum in food21

processing and packaging, particularly concerning its interaction with the most abundant milk pro-22

teins and lactose. By employing a multiscale modeling approach, we simulated the interaction23

between metallic aluminum surfaces and the proteins and lactose, considering different crystal-24
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lographic orientations. The results of our study provide valuable insights into the mechanisms of25

lactose and proteins deposition on aluminum surfaces, which can aid in the general understanding26

of protein corona formation.27
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Introduction31

The interface between biological systems and engineered materials has gained significant atten-32

tion in recent years due to its wide range of applications, spanning from food to medicine and en-33

vironmental science [1,2]. This interface plays a crucial role in ensuring the safety and quality of34

processed and packaged products. The selection of packaging materials and their interaction with35

biological components have emerged as critical determinants impacting the preservation, shelf life,36

and overall acceptability of dairy products [3]. Consequently, the interface between biologically37

relevant molecules and nanoscale materials, such as aluminum, has become an increasingly impor-38

tant and intriguing area of research [4]. For long-term storage and preservation of prepared food,39

the choice of containers and utensils made from specific materials is essential [5]. For example it40

was shown that ripened cheese and cheese spreads acquire a higher aluminum content as compared41

to other milk products [6]. Aside from wrapping and container packaging, aluminum has found a42

wide popularity in other applications, such as manufacturing of kitchen utensils, cosmetics, compo-43

nents for medical and scientific equipment [7]. Figure 1 presents a schematic contamination cycle44

of dairy products, showcasing potential sources and pathways of aluminum pollution. It illustrates45

the journey of milk from a cow grazing on the grass, contaminated with heavy metals, highlighting46

the crucial role of metallic containers, metal-based equipment, and kitchen utensils in maintaining47

product integrity. The figure further demonstrates the potential to introduce heavy metal contam-48

ination, including iron and aluminum, during processing and emphasizes the formation of a milk49

layer in form of protein/lactose corona at the outer surface of macroscropic, micro- and nano-sized50
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particulate during post-packaging period. It also highlights the dynamic interactions at the bio-51

nano interface associated with potential human health hazards. Through biomolecule adsorption,52

change of conformation, and surface chemistry, foreign materials engage in a complex interplay53

of dynamic physicochemical interactions, kinetics, and thermodynamic exchanges that can lead to54

undesirable outcomes [1,8-10].55

Figure 1: Schematic representation of the contamination cycle of dairy products, showcasing po-
tential sources and pathways of contamination. The diagram illustrates the journey of milk from a
cow grazing on grass contaminated with heavy metals, through collection, processing, and pack-
aging stages. It highlights the crucial role of metallic containers, stainless steel equipment, and
kitchen utensils in maintaining product integrity. The figure further illustrates the fouling process
and the potential for milk contamination during processing. Additionally, it emphasizes the forma-
tion of a protein corona around nanoparticle (NP) post-packaging, while demonstrating the poten-
tial uptake of these NP by cells, thus highlighting the dynamic interactions at the bionano interface.
Figure 1 was created with BioRender.com, https://biorender.com/. This content is not subject to CC
BY 4.0.

In a more general context, the importance in understanding the mechanism of bionano interactions56

arises from the increasing awareness and concerns regarding the safety of nanoparticles (NPs)57

in relation to human and animal health. The toxicity of NPs is closely linked to its chemical ag-58

gressiveness and varies with its physicochemical properties, including surface area, charge, and59
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reactivity. Understanding the intricate interplay between these properties and the biological sys-60

tems is vital for assessing and mitigating any potential adverse effects associated with exposure to61

NPs [11]. To advance in this field, it is crucial to comprehend the underlying forces and molecular62

constituents that govern these interactions between biomolecules and metals. However, traditional63

safety assessment methods can be costly, time-consuming, and often involve animal studies. In this64

regard, in silico modeling offers a promising alternative that can predict the interactions of NPs65

with living organisms. By leveraging computational approaches, in silico modeling provides a hu-66

mane and cost-effective means of obtaining the necessary information, thus aiding in the evaluation67

of NP safety and reducing reliance on animal experimentation [12-14]. Data-driven methods that68

rely on statistical analysis are employed for this purpose, particularly when sufficient data are avail-69

able. These methods leverage the power of large datasets to identify patterns, trends, and correla-70

tions between metal properties and their interactions with biomolecules [15-18]. In recent years,71

researchers have focused on using physics-based models to understand the mechanisms underlying72

the formation of NP protein corona, a complex layer of biomolecules that surrounds NPs upon their73

exposure to biological fluids [19,20]. It is widely recognized that the composition and configura-74

tion of the protein corona play a crucial role in determining the biochemical reactivity, sensitivity75

of NPs, as well as their cellular uptake and systemic transfer [21]. However, in order to develop76

predictive models, a deeper understanding of the interactions at the bionano interface and their re-77

lationship to material and protein properties is necessary. Gathering more information on these78

intricate interactions will facilitate the development of accurate predictive models, thereby advanc-79

ing our ability to assess the behavior and potential implications of NPs in biological systems. The80

bionano interface can be broken down into three interconnected components: (i) the surface of the81

NP, which is influenced by its physicochemical composition; (ii) the interface between the solid NP82

and the surrounding liquid environment, where notable changes occur upon interaction; and (iii)83

the contact zone between the solid-liquid interface and biological substrates (Figure 2) [22].84

In this work, we study bionano interactions involving metallic aluminum and common dairy85

biomolecules: lactose and six most abundant milk proteins from these six major groups [23]. The86
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Figure 2: The bionano interface comprises three essential aspects, symbolized as components
within a circular representation. These components consist of the surface properties of the nano-
material, the characteristics of the surrounding medium, and the biological factors at play. These
parameters collectively govern the intricate interactions and dynamics occurring at the interface.

main objective of our analysis is to computationally quantify the relative binding of these proteins87

on zero-valent aluminum surfaces based on their energy of adsorption and orientation. We employ88

a three-level multiscale method (as shown in Figure 3 to calculate the energies of adsorption and89

the content of the corona for these proteins on the selected surfaces. In the next section (Section90

“Results and Discussion” ), we provide a detailed explanation of the theoretical model developed91

to study the interaction between protein and lactose with metals, as well as the rationale behind the92

parameterization scheme used. Subsequently, we discuss the simulation results and analyze the93

individual adsorption affinities predicted for molecules representing the biological aspect of the94

interface, including amino acids (AAs), milk proteins, and carbohydrates. Additionally, we exam-95

ine the preferred orientations of these molecules upon adsorption and investigate the kinetics of96
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competitive adsorption among the proteins and lactose, aiming to understand the process of protein97

deposition on metallic surfaces. Finally, the key insights gained from this study are summarized,98

highlighting the implications and potential applications of the findings.99

Results and Discussion100

In this section, we present the results and discuss the findings of our study of milk protein and lac-101

tose interaction with metallic aluminum surfaces using a multiscale molecular simulation. Our102

methodology employs a coarse-grained (CG) kinetic Monte Carlo (KMC) method [16] to simulate103

competitive adsorption of biomolecules onto the aluminum surface. To achieve this, we evaluate104

individual binding energies at various orientations (represented by heatmaps) for each selected105

protein immobilized on different FCC planes of the aluminum surface. These heatmaps for in-106

dividual proteins are acquired through UA simulations [24,25]. While the UA method has been107

parameterized for a range of rigid surfaces, including metals (Ag, Au, Cu, and Fe), oxides (TiO2,108

SiO2, and Fe2O3), organic NPs (graphene, carbon nanotubes, and carbon black), semiconductors109

(CdSe) [26], and polymers [27], it lacks the set of short-range potentials required for calculating110

milk protein–aluminum adsorption energies. Here, we compute potentials of mean force (PMF) for111

Al surfaces derived from explicit all-atom molecular dynamics simulations utilizing a previously112

established scheme [2,24,28]. These PMFs provide the input required to determine the adsorption113

energies between milk proteins and aluminum surfaces by using multiscale UA CG model, span-114

ning from the atomistic level of description to the complete mesoscale model of the corona. Figure115

3 shows the parameterization and simulation workflow, outlining different stages and components116

involved in the study.117

All-atoms short-range interaction modelling results118

All-atom metadynamics simulations were conducted using GROMACS-2018.6 and PLUMED119

(PLUMED2-2.5.1.conda.5) software packages [29-31]. CHARMM-GUI/Nanomaterial Modeler120

was employed to construct the topology and force fields of three FCC surfaces of Al: (100), (110),121
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Figure 3: The multiscale modeling approach employed in this study. Our methodology begins by
computing potentials for individual amino acids using an all-atom model. Next, it utilizes these
to determine the adsorption energy for each protein, employing the coarse-grained United Atom
model. Finally, it predicts the composition of the biomolecule corona using the coarse-grained ki-
netic Monte Carlo model. The figure provides an overview of input and output data at each scale.

and (111) [32]. The General Amber Force Field (GAFF) was utilized to model side-chains ana-122

logues (SCA) within the system [33,34]. The AMBER force field is a widely recognized and ex-123

tensively validated force field that provides accurate descriptions of molecular systems [35]. We124

investigated the short-range PMF between 22 SCAs and a AlNP slab within a solvent environment125

comprising water and salt ions. The system’s pH was maintained at a neutral level, and the salt126

concentration was set to match the biological salt concentration of 150 mM, equivalent to one salt127

molecule per 10 nm3. The system underwent equilibration for 1.0 nanosecond under constant pres-128

sure conditions at 1.0 bar and a temperature of 300 K, following the NPT ensemble, employing129

Berendsen weak coupling method [36]. Subsequently, a pre-equilibration phase was conducted130

for 10 nanoseconds within the NVT ensemble. For the short-range van der Waals (vdW) interac-131

tions, the cut-off distance was defined as 1.0 nm. The adaptive well-tempered metadynamic (AWR-132

MetaD), the energy of adsorption was carried out at 300 K and pressure 1.0 bar and neutral pH in133

7



the NVT ensemble. Additionally, we measured the adsorption energy as a function of surface sep-134

aration distance (SSD) as a collective variable, enabling a comprehensive analysis of the AA-NP135

interactions. For a detailed explanation of the method used in this study, please refer to previous re-136

ports [2,24,28] where the method has been described in depth. Figure 4 and dataset [37] shows the137

obtained free energy of adsorption in units of 𝑘𝐵𝑇 .138

Figure 4: Adsorption free energy profiles of side chain amino acids on three aluminum FCC
slabs as a function of Surface Separation Distance (SSD). These profiles were calculated using all-
atomistic AWT-MetaD. The vertical lines indicate the positions of water and ion layers. (a) Al-100
(b) Al-110 and (c) Al-111.

The water density profiles obtained from MD simulations for the slab-water system in the context139

of Al surfaces revealed characteristics which were previously observed for other simulated metal-140

lic surfaces [2,28]. The profiles exhibited two distinct regions with elevated water density located141

approximately 0.15-0.18 nm and 0.42-0.48 nm away from the aluminum surface. These regions142
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corresponded to the first and second water layers adjacent to the metal surface, respectively (as143

depicted in Figure S1). Further examination of the ion density profiles indicated the presence of144

sodium ions within a range of 0.55-0.60 nm and chloride ions within a range of 0.42-0.46 nm from145

the Al surface. Notably, the positions of the sodium and chloride ions align closely with the second146

water layer and the first water layer, respectively, as marked by the blue and purple vertical dashed147

lines in Figure 4. This alignment suggests that the sodium ions position themselves in proximity to148

the oxygen atoms of the first water adlayer, while the chloride ions integrate into the network of wa-149

ter molecules comprising the second adlayer. Additionally, the analysis of the PMF energy minima150

revealed a significant minimum at a distance of 0.21-0.25 nm, indicating a significant structuring151

of the adjacent water layer. Figure 5 shows the minimum energy values obtained for each AA on152

different facets of the aluminum surface (100, 110, and 111) in a bar chart.153

A comparison of the adsorption energies on aluminum and iron surfaces reveals distinct pref-154

erences for different AA types. On aluminum surfaces, ARG, PRO, TRP, TYR AAs show the155

strongest attraction (−63.32𝑘𝐵𝑇 to −41.46𝑘𝐵𝑇), followed by HIE, GLN, PHE, GAN ( −43.86𝑘𝐵𝑇156

to −20.85𝑘𝐵𝑇). VAL, THR, SER, CYS, ALA exhibit the weakest attraction (−19.51𝑘𝐵𝑇 to157

−1.76𝑘𝐵𝑇). On iron surfaces, charged and aromatic PRO, TYR, ARG, HIS AAs are strongly at-158

tached (−91.29𝑘𝐵𝑇 to −43.34𝑘𝐵𝑇), while hydrophobic VAL, LEU, ALA AAs show a weaker adhe-159

sion (−21.70𝑘𝐵𝑇 to 2.86𝑘𝐵𝑇). The PMF for glucose with aluminum surfaces computed using the160

PMFPredictor software is shown in Figure 6 [38].161

Protein-NP interactions162

To further understand the adsorption energy and orientation of each individual protein, a primary163

coarse-graining step was performed. In this part, we use the UA model to predict the protein–NP164

binding energies. This model takes into account various factors, such as the material’s chemical165

composition, size, shape, surface roughness, charge, functionalization, and hydrophobicity, when166

constructing CG models for bionano interface. The UA model simplifies the protein-NP interac-167

tions by representing proteins as rigid structures composed of 20 AA types, each represented by168
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Figure 5: Minimum energy of adsorption values (𝑘𝐵𝑇) for each side chain amino acid on three
Al FCC slabs (100, 110, 111) obtained through all-atomistic simulation. Notably, Al-111 exhibits
stronger binding affinity in comparison to Al-100 and Al-110.

a single bead. This interaction is described through a short-range surface non-bonded potential169

(𝑈𝑛𝑏
𝑠 ) (including vdW repulsion and solvent effects), a long-range core vdW potential (𝑈𝑣𝑑𝑊

𝑙
), and170

an electrostatic potential (𝑈𝑒𝑙). Through interaction potentials for specific AAs with the NP, the171

overall interaction potential between the NP and the complete protein (𝑈𝑝−𝑁𝑃) is expressed in a172

pairwise additive manner:173

𝑈𝑝−𝑁𝑃 =

𝑁𝐴𝐴∑︁
𝑖=1

𝑈𝑖 (𝑑𝑖 (𝜃, 𝜙)) =
𝑁𝐴𝐴∑︁
𝑖=1

𝑈𝑒𝑙
𝑖 (𝑑𝑖 (𝜃, 𝜙)) +

𝑁𝐴𝐴∑︁
𝑖=1

𝑈
𝑛𝑏𝑠
𝑖

(𝑑𝑖 (𝜃, 𝜙)) +
𝑁𝐴𝐴∑︁
𝑖=1

𝑈
𝑣𝑑𝑊𝑙

𝑖
(𝑑𝑖 (𝜃, 𝜙))

(1)174
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Figure 6: The interaction energy of glucose with the three Al surfaces considered in this work,
predicted using the machine-learning method implemented in the PMFPredictor Toolkit. The solid
lines give the ensemble average of ten versions of the model while the shaded regions indicate the
95% confidence intervals.

The potential𝑈𝑝−𝑁𝑃 depends on the distance 𝑑𝑖 between the centers of mass (COMs) of the NP175

and each AA in the protein. This distance is determined by the protein’s orientation with respect176

to the NP’s surface, which is defined by two rotational angles (𝜃, 𝜙) relative to the protein’s ini-177

tial orientation. This initial orientation is set by performing a principle axis transformation such178

that the axis associated with the smallest moment of inertia is aligned to the 𝑧-axis and the sec-179

ond smallest to the 𝑦-axis, i.e., the 𝑧-axis is now typically associated with the greatest extent of the180

protein. Since this does not uniquely specify the orientation, further rotations of 180◦ are then ap-181

plied if necessary such that the electric dipole moment is positive along these two axes. This pro-182

duces a convenient reference state by which other orientations are defined. The specific orientation183

𝜙, 𝜃 is generated by applying a rotations of −𝜙 around the 𝑧-axis followed by 180◦ − 𝜃 around the184

y-axis. The short-range surface non-bonded potentials are extracted from all-atom adaptive well-185

tempered metadynamics (AWR-MetaD) simulations that were described in Section “All-atoms186

short-range interaction modelling results” . The Hamaker technique is used to approximate the187

long-range term that results from the vdW forces working through the aqueous medium between188

the NP core and the 𝑖th AA. The electrostatic interaction between the NP and AA is represented189
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by the screened Coulomb potential. More comprehensive information about the theoretical aspects190

of the UA model can be found in our previous publications [2,25,28,39,40]. The output of the UA191

simulations contains a collection of rotational configurations and their corresponding 𝐸 (𝜃𝑘 , 𝜙𝑙) val-192

ues. By employing Boltzmann averaging and weighting factors based on the potential energy as a193

function of distance for each angle, we calculate the average adsorption energy of these configura-194

tions. Using this approach, we evaluate the adsorption energies of the entire proteins on aluminum195

surfaces. To predict the three-dimensional (3D) structures of proteins, we utilize the I-TASSER196

(Iterative Threading ASSEmbly Refinement) 5.1 software [41], which uses the protein’s AA se-197

quences as an input.198

For this study, we have chosen 6 representative cow milk proteins and lactose that constitute most199

of the non-fat milk solids. Table 1 displays properties of the chosen milk molecules. It includes200

their UniProt IDs, molecular weights, charges, and the number of AAs in each protein. The charge201

data was determined through the PROPKA method [42,43] at a pH of 7.0. As we will discuss in202

Section “Protein-NP interactions”, we model the lactose molecule as a pair of glucose beads, and it203

does not possess a UniProt ID or a count of AA residues. We estimated the concentration of each204

protein and lactose based on their weight fraction in milk and considering the fact that cow milk205

has 30–39 g/L of protein and 45-55 g/L of lactose in total. The molar mass of each protein was206

taken from AlphaFold database [44]. Following this, all proteins underwent a 50 ns equilibration in207

water using NVT and NPT ensembles.208

Table 1: Characteristics of the selected milk proteins and lactose.

Abbreviation UniProt ID Molecule Name 𝑀𝑊𝑎, Da Charge, 𝑒 𝑅𝑒𝑠𝑏 𝐶𝑐 [10−4], mol/L
AS1C P02662 𝛼s1-casein 24528.00 -8.5 214 4
AS2C P02663 𝛼s2-casein 26018.69 4.5 222 1
BC P02666 𝛽-casein 25107.33 -4.5 224 4

ALAC P00711 𝛼-lactalbumin 16246.61 -5 142 0.9
BLAC P02754 𝛽-lactoglobulin 19883.25 -6 178 2
BSA P02769 bovine serum albumin 69293.41 -4.5 607 0.1
LAC - lactose 342.3 0 - 1300

(a) Molecular weight, (b) Number of residues, (c) Concentrations [mol/L] of the molecules in milk
that were used in KMC calculations.
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The UA computations were conducted using nine different Al NPs with varying radii, namely 2209

nm, 5 nm, 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 80 nm, and 100 nm, to investigate the influence210

of size and curvature on the adsorption energies. The results and detailed information on the cal-211

culation can be found in Figures S2 and S3, which illustrate the variations in adsorption energies212

as a function of NP size. Within the range of 2-20 nm the binding energy of ALAC, BLAC, BC,213

and BSA shows an initial increase on all surfaces, followed by a stabilization at larger NP sizes. In214

contrast, AS1C and AS2C exhibit a continuous rise in binding energy across the entire size spec-215

trum, ranging from −48.0𝑘𝐵𝑇 at 2 nm to −281.09𝑘𝐵𝑇 at 100 nm for AS1C and −15.26𝑘𝐵𝑇 at 2216

nm to −275.60𝑘𝐵𝑇 at 100 nm for AS2C, with AS2C exhibiting the most dramatic changes in bind-217

ing energy as a function of size. This strong size dependence in binding energy for AS2C can be218

attributed to its rod-like 3D structure and the rigidity assumption in our model. As the size of the219

NP increases, AS2C can make more extensive contact with the surface. This increased contact220

area leads to enhanced binding affinity, resulting in the observed stonger in binding across the size221

range. This is not the case for other proteins on the list as they are small and compact and therefore222

reach the maximum number of contacts at relatively small NP sizes. Regarding the binding affin-223

ity rankings, for the smallest NPs (2 nm), the order from weakest to strongest is observed as AS2C,224

BSA, ALAC, BLAC, AS1C, and BC on Al-100, with similar rankings observed on Al-110 and Al-225

111 surfaces. However, for the largest (flattest) NPs (100 nm), the binding affinity ranking changes226

to ALAC, BLAC, BSA, BC, AS2C, and AS1C on Al-100, BC, ALAC, BLAC, BSA, AS2C, and227

AS1C on Al-110, and BLAC, ALAC, BC, BSA, AS2C, and AS1C on Al-111 (see Figure S2). In228

reality, proteins’ structure is not rigid, allowing them to adapt to the surfaces upon immobilisation.229

Thus this can potentially affect their binding behavior. This can be especially significant for ca-230

seins, as they belong to the group of flexible milk proteins with no tertiary structure. Globular milk231

proteins (lactoglobulin and lactalbumin) are expected to be less prone to this shortcoming of UA232

model.233

Figure 7 shows the output of the UA model for the selected milk proteins on Aluminum NP surface234

size 80 nm with zeta potential −5 mV at pH 7.0. The heatmaps display the adsorption energies for235
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all values of 𝜃 and 𝜙. Blue areas with lower energies indicate more favorable orientations of the236

proteins. Each heatmap is accompanied by a 3D representation of the protein on the NP surface,237

with the AAs closest to the NP’s surface marked. The AAs that are most likely to make contact238

with the metal surfaces, according to analysis, are LYS, TYR, PHE, GLU, ARG, ASP.239

Figure 7: Heatmap results obtained from United Atom model and corresponding 3D representa-
tions of the interactions of (a) 𝛼s1-casein, (b) 𝛼s2-casein, (c) 𝛽-casein, (d) 𝛽-lactoglobulins, (e)
𝛼-lactalbumin, and (f) bovine serum albumin with Al-110 on the preferred orientation. The figure
highlights the closest amino acids to the surface of the material.

The rankings of protein adsorption on each aluminum surface are shown in Table 2 , highlighting240

the variations in adsorption energies (𝐸𝑎𝑑/𝑘𝐵𝑇) and the particular protein-surface interactions (𝜃241

and 𝜙 in degrees). Moreover, the minimum distance (𝑟𝑚𝑖𝑛 in nm) indicates the closest approach of242

the protein to the aluminum surface during the adsorption process.243

The ranking of adsorption energies highlights the distinct adsorption behaviors of various proteins244

on different aluminum FCC surfaces. Particularly noteworthy is the consistently high adsorption245
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Table 2: Comparison of milk proteins’ binding affinities and orientations on Al-100, Al-110, and
Al-111 with NP size of 80 nm, derived from the United Atom model and ordered by the binding
strength on each surface.

Individual protein adsorption description on Al-100
Protein, 𝐸𝑎𝑑/𝑘𝐵𝑇 𝜙,◦ 𝜃,◦ r𝑚𝑖𝑛, nm
AS1C −145.65 175 100 0.19
BC −108.13 305 40 0.13

AS2C −96.12 315 95 0.05
BSA −91.11 45 60 0.11

BLAC −67.35 65 90 0.19
ALAC −49.12 125 35 0.20

Individual protein adsorption description on Al-110
Protein, 𝐸𝑎𝑑/𝑘𝐵𝑇 𝜙,◦ 𝜃,◦ r𝑚𝑖𝑛, nm
AS1C −278.37 175 100 0.32
AS2C −224.01 345 90 0.10
BSA −173.77 40 60 0.23

BLAC −157.70 50 95 0.28
ALAC −155.17 70 90 0.29

BC −132.52 0 70 0.20
Individual protein adsorption description on Al-111

Protein, 𝐸𝑎𝑑/𝑘𝐵𝑇 𝜙,◦ 𝜃,◦ r𝑚𝑖𝑛, nm
AS1C −242.93 175 100 0.15
AS2C −181.65 330 90 0.11
BSA −137.46 45 60 0.13
BC −131.93 140 110 0.15

ALAC −125.76 75 90 0.17
BLAC −113.39 45 75 0.20

energy of AS1C across all surfaces, indicating a strong binding affinity with aluminum. On the246

other hand, ALAC and BLAC exhibited the lowest adsorption energies on most surfaces, suggest-247

ing weaker interactions. Meanwhile, BC, AS2C, and BSA displayed moderate adsorption ener-248

gies, indicating intermediate binding strengths with aluminum. The Table S2 of the Supplemen-249

tary Material reports the preferred orientations of all 820 milk proteins based on the lowest energy250

from the UnitedAtom output. In our investigation of these proteins, we focused on identifying the251

most strongly adsorbing proteins when exposed to Fe and Al. These proteins, including P19660,252

A6QP30, G3X745, F1MMI6, E1BBY7, A6QLY7, and Q9N2I2, demonstrated remarkable similar-253

ity in their binding behavior towards Fe-100 and Al-100 surfaces, E1BGJ4, A5D7M6, F1MMI6,254
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A6QP30, G3X745, and F1N1C7 on Fe-110 and Al-110 surfaces, and F1MMI6 and E1B748 and255

A6QP30 on Fe-111 and Al-111 surfaces.256

In the subsequent step, we predict the composition of the milk protein layer at the aluminum sur-257

faces. For this analysis, we consider the Al surface as a spherical NP with the protein layer uni-258

formly adsorbed on its entire surface, forming the protein corona.259

Competitive adsorption and biomolecular corona260

Kinetic Monte Carlo (KMC) simulations as implemented in the CoronaKMC tool [26] were em-261

ployed to investigate competitive adsorption and determine the composition of the protein corona.262

This method models adsorbates as hard-spheres which adsorb and desorb to the surface of the NP,263

with different orientations of each protein treated as different potential adsorbates to allow for a264

more physically realistic model of corona formation for anisotropic proteins. In brief, a standard265

kinetic Monte Carlo routine is used to advance the simulation from one event – collision of an in-266

coming adsorbate with the NP or desorption of an adsorbed species – to the next, with events oc-267

curring with a probability proportional to their rate. In the initial form of the model, adsorption is268

assumed to occur with unit probability if the incoming species does not overlap with any currently269

adsorbed species and fails to take place otherwise. We parameterize this model using adsorption270

and desorption rate constants extracted from UnitedAtom results as described previously [16,45].271

In brief, each potential adsorbate (e.g. a small molecule or a particular orientation of a protein) is272

projected onto the surface of the NP and a convex hull procedure used to estimate the area of the273

NP occupied by that adsorbate, 𝐴𝑖. The adsorbate is then assigned an effective radius 𝑅𝑖 such that a274

sphere projected onto the NP would produce the same radius [16]. The per-site adsorption rates are275

calculated using kinetic theory for the rate of collisions between two spheres in solution, normal-276

ized by the number of binding sites for that protein,277

𝑘𝑎 =
𝐴𝑖

4𝜋𝑅2
𝑁𝑃

[4𝜋𝐷𝑁𝐴 (𝑅𝑁𝑃 + 𝑅𝑖)] (2)278
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where 𝑅𝑁𝑃 is the radius of the NP, 𝑁𝐴 is Avogadro’s number, 𝑅𝐴 is the effective adsorbate radius,279

𝐷 is the pair diffusion coefficient given by,280

𝐷 =
𝑘𝐵𝑇

6𝜂

(
𝑅−1
𝑁𝑃 + 𝑅−1

𝐴

)
(3)281

taking the viscosity 𝜂 = 8.9 × 10−4 Pa ·s. We employ SI units in the above calculation, noting that282

𝑘𝑎 must then be multiplied by 1000 to convert from units m3 · mol−1 to L · mol−1. Desorption rates283

are found by requiring that 𝑘𝑎/𝑘𝑑 = 𝐾𝑒𝑞 = 1 L
mol𝑒

−𝐸𝑎𝑑𝑠/𝑘𝐵𝑇 , where 𝐸𝑎𝑑𝑠 is the value obtained for that284

orientation using UnitedAtom [45]. A concentration is then assigned to the adsorbate based on the285

bulk concentration of that adsorbate, weighted by the relative abundance of that orientation of the286

adsorbate if necessary, i.e., for protein 𝑖 with a bulk concentration of 𝐶𝑖 and set of orientations 𝜃𝑘287

an orientation 𝜃 𝑗 is assigned a concentration,288

𝐶𝑖, 𝑗 = 𝐶𝑖
sin 𝜃 𝑗∑
𝑘 sin 𝜃𝑘

, (4)289

to ensure that orientations are correctly weighted and the total concentration summed over orien-290

tations is correctly reproduced. Scripts to automate this parameterization based on UA output and291

adsorbate structure files are available as part of the UnitedAtom repository [26].292

We further analyze the results for adsorption of milk components obtained from KMC simulations,293

specifically focusing on the mean absolute and relative abundance of proteins (10−3 nm2) adsorbed294

on Al surfaces per unit area (nm2). Table 3 shows the abundances of the proteins and lactose on Al295

surfaces.296

The simulations were performed using NPs with a radius of 80 nm, and the data is presented in297

Table 3. It presents the number concentration and mass abundance of proteins adsorbed on three298

different Al surfaces: Al-100, Al-110, and Al-111. Each protein’s adsorption behavior is quantified299

in terms of its number concentration (expressed in units of 10−3 nm−2) and mass abundance (repre-300

sented as a percentage of the total adsorbed mass). These calculations were performed utilizing the301

most recent KMC method modifications, including an alternative mode in which the acceptance-302
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Table 3: Mean amounts of proteins adsorbed on Al surfaces per unit area: number concentration
(per nm2), mass abundance obtained from KMC simulations with NPs of radius 80 nm. These cal-
culations have been done using the latest modifications to the KMC approach.

Al-100 Al-100 Al-110 Al-110 Al-111 Al-111
Protein 𝑵𝒂𝒅𝒔[10−3, nm−2] 𝑴𝒂𝒃,% 𝑵𝒂𝒅𝒔[10−3, nm−2] 𝑴𝒂𝒃, % 𝑵𝒂𝒅𝒔[10−3, nm−2] 𝑴𝒂𝒃, %
AS1C 12.26 57.16 16.70 67.82 27.21 83.19
BC 4.45 21.24 3.38 14.07 1.91 5.84

BLAC 2.91 10.99 2.97 9.79 1.00 2.43
LAC 96.59 6.28 89.13 5.05 84.50 3.62

ALAC 1.14 3.51 1.13 3.05 1.84 3.60
AS2C 0.11 0.55 0.04 0.16 3.00 1.09
BSA 0.02 0.25 0.00 0.05 0.02 0.21

rejection criteria for incoming adsorbates are tweaked to allow for some overlap with pre-existing303

adsorbates. We should note that the Al-111 has the lowest energy of all three, according to the Ma-304

terials Project data, so we expect the adsorption profile in real systems be similar to that predicted305

for Al-111.306

We also compared the protein composition in the corona on aluminum and iron [2], obtained in307

our previous work using the original KMC approach without molecular displacements. This com-308

parison is shown in Figure 8. AS1C exhibited the highest abundance on both iron and aluminum309

among the studied proteins, indicating a strong affinity for both metals with both KMC methods.310

Following AS1C, BC and BLAC and ALAC also showed fairly equal abundances on the surfaces311

of iron and aluminum. On the other hand, BSA displayed the lowest abundance on both metals due312

to its larger size and the relatively low molar fraction in milk as compared with other proteins. Fig-313

ure 8 shows the mass abundance of each protein on both aluminum (Al-100, Al-110, Al-111) and314

iron (Fe-100, Fe-110, Fe-111) surfaces. We can also observe that AS1C, BLAC, and ALAC display315

significantly enhanced presence on Fe surfaces in contrast to their Al counterparts. Conversely,316

AS2C shows greater adsorption on Al surfaces as compared to Fe. Overall, we expect a somewhat317

different corona formed on these metallic surfaces.318

Realistic organic media do not consist only of proteins, but it also includes many other molecules,319

e.g. sugars and other organic compounds, that may bind to an NP along with proteins. It can rea-320

sonably be assumed that these molecules may alter both the kinetics and equilibrium state of the321
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Figure 8: Mass Abundance of Proteins on Al (blues) and Fe (yellows) Surfaces (100, 110, and
111) using the original KMC approach without molecular displacements, with a NP radius size of
80 nm.

corona, and moreover may play a role in biological outcomes. Thus, it is of interest to include these322

small molecules in the corona simulation to not only gain further insight into this particular case of323

aluminum in milk, but also to establish a methodology by which more general molecules can be in-324

cluded in these simulations. We choose lactose as a prototypical example of a small molecule capa-325

ble of binding to an NP, since this is present at a high concentration in milk. We model the lactose326

molecule as a pair of glucose beads separated by a distance determined by the equilibrium structure327

of lactose. Although this is not completely rigorous, it demonstrates how the UnitedAtom soft-328

ware can be adapted to model larger molecules other than proteins using the same fragment-based329

approach. To avoid the need to run a time-consuming parameterization protocol based on meta-330

dynamics simulations, we produce PMFs for the glucose bead using a machine-learning technique331

(PMFPredictor) trained on previous metadynamics results [38]. For the lactose molecule, each con-332

stituent glucose bead is assigned a charge of 0 and the Hamaker term is neglected due to the small333

size of these beads. Following this parameterization, the coarse-grained lactose molecule is pro-334

cessed identically to proteins using the same automated pipeline, i.e., UnitedAtom is run to produce335

a table of orientation-specific binding energies and these mapped to rate constants for adsorption336

and desorption. We stress that this procedure is sufficiently generic that essentially arbitrary or-337
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ganic molecules can be included in the simulation by performing a fragment-based decomposition,338

generating PMFs via traditional or machine-learning approaches, and constructing a coarse-grained339

representation for input to UA. To simplify this procedure for more complex molecules, we have340

developed a Python script (MolToFragments.py) employing RDKit [46] to automate splitting larger341

molecules into suitable fragments and producing coarse-grained input files suitable for UnitedAtom342

and included with this repository [26].343

The addition of lactose (or other small molecules) to the corona simulation poses a challenge for344

the form of the CoronaKMC algorithm previously employed due to the high concentration and345

very small binding area of this small molecule relative to proteins [16,45]. As a consequence of346

these factors, the original form of the algorithm results in rapid coverage of the NP with a very347

large quantity of lactose which greatly increases the required computational time, which scales as348

O(𝑁2) for 𝑁 adsorbed particles. Moreover, in this original form of the model a single adsorbed349

lactose molecule inhibits the adsorption of a large protein, no matter how strongly the protein may350

adsorb. To counteract these issues, the following features were added to the new version of the351

CoronaKMC software. Firstly, we implemented a method to accelerate the simulation by adjust-352

ing rate constants for quasi-equilibriated processes (e.g. the adsorption of lactose) according to the353

methodology of Dybeck et al. [47]. Secondly, we added an optional mode in which the acceptance-354

rejection criteria for an incoming adsorbate is modified such that an incoming adsorbate is no355

longer immediately rejected if it overlaps with a pre-existing adsorbate. Instead, the incoming ad-356

sorbate is accepted with a probability 𝑝 given by,357

𝑝(Δ𝐸) = exp[−Δ𝐸/𝑘𝐵𝑇]
1 + exp[−Δ𝐸/𝑘𝐵𝑇]

(5)358

where Δ𝐸 is the difference in energy between the two states,359

Δ𝐸 = 𝐸𝑎𝑑𝑠 −
∑︁
𝑗

𝐸 𝑗 (6)360

where 𝑗 is the set of all adsorbed particles which would overlap with this particle, taking Δ𝐸 =361
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𝐸𝑎𝑑𝑠 if no overlaps are found. If the adsorbate is accepted then all the overlapping particles are re-362

moved from the NP. We note that this breaks the principle of detailed balance in that it allows for363

the replacement of a set of adsorbates by a single molecule, but does not allow for the converse in364

which a set of incoming molecules can displace an adsorbate. We justify this neglect on the basis365

that the required event of multiple simultaneous collisions on a single target would occur so rarely366

that it would essentially not be sampled in the course of a simulation. The probabilistic acceptance367

to regions of the NP without explicit adsorbates present effectively multiplies the adsorption rate by368

a factor of 𝑝(𝐸𝑎𝑑𝑠) and so to maintain the same equilibrium constant, we must multiply the desorp-369

tion rate by this same factor, noting that this correction is only significant for very weakly adsorb-370

ing particles with 𝐸𝑎𝑑𝑠 ≳ −3𝑘𝐵𝑇 . This methodology does not treat adsorption of water to the NP371

explicitly but it is assumed that all binding energies are defined relative to the adsorption of water372

which is assigned an affinity 𝐸𝑎𝑑𝑠 = 0𝑘𝐵𝑇 , and that the concentration of water is sufficiently high373

such that any region of the NP without an explicit adsorbate can be assumed to be covered in water.374

The results of simulations obtained with the updated CoronaKMC (i.e. including the molecule dis-375

placement) are shown in Table 3 and they suggest a notable variation in the abundances of pro-376

teins and lactose among different Al crystallographic orientations. Notably, on all surfaces stud-377

ied, AS1C and BC consistently exhibited the highest protein abundances, while BLAC, LAC, and378

ALAC demonstrated moderate adsorption levels. In contrast, AS2C and BSA consistently dis-379

played the lowest adsorption among the proteins considered in our simulations. Furthermore, when380

considering different Al facets, it is evident that surface 110 consistently exhibited the weakest av-381

erage adsorption across all proteins. When the displacement is allowed, AS1C gains much more382

space in the corona by replacing other proteins, mostly BLAC, ALAC, and AS2C.383

Figure 9 presents a comparison between the protein abundances in the corona on Al and Fe ob-384

tained using the enhanced version of the KMC algorithm with molecular displacements. As dis-385

cussed earlier, this improved algorithm addresses computational efficiency concerns and more386

accurately represents long-term scenarios during protein corona formation. As shown in the Fig-387

ure, these algorithmic improvements have a profound impact on the mass concentration of milk388
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proteins on metallic surfaces, particularly on iron. In the original algorithm (Figure 8), proteins389

showed comparable mass abundances on both metals. However, the enhanced algorithm reveals a390

distinct change in the adsorption behavior of the AS1C protein on Fe and Al surfaces, character-391

ized by a substantial increase in mass concentration compared to other proteins. The data in Table392

3 show that in terms of mass abundance lactose ranks fourth among the corona components (see393

Figure S3). As compared to the algorithm without displacement [2], the protein abundance ranking394

on iron (NP radius 80 nm) surfaces changes to: AS1C ≫ BC ≥ BLAC ≥ ALAC > AS2C ≈ BSA.395

Comparable affinity ranking is also now observed for aluminum surfaces (80 nm) studied in current396

work: AS1C ≫ BC ≥ BLAC ≥ ALAC > AS2C ≈ BSA.397

Figure 9: Mass abundance of proteins on Al (blues) and Fe (yellows) surfaces (100, 110, and 111)
using the KMC model with molecule displacement and NP radius size of 80 nm.

Conclusions398

In this work, we applied a multiscale computational model to study adsorption of milk solids on399

the metallic surfaces of aluminum, widely used in food processing/packaging. The milk model was400

composed of six most common milk proteins and lactose. To account for the size differences of se-401

lected milk constituents we used an improved competitive adsorption algorithm that can potentially402
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achieve a realistic description of biocorona formation processes with diverse adsorbates (e.g. for403

predicting eco-corona).404

Our computational model predicts strong binding of milk proteins to pure aluminum surface, which405

is in agreement with our previous observations for metallic iron surfaces [2]. For aluminum, we406

also found that 𝛼s1-casein and 𝛼s2-caseins exhibited the strongest binding to the metal, followed407

by bovine serum albumin, 𝛽-casein, 𝛽-lactoglobulins, and 𝛼-lactalbumin, which displayed weaker408

adsorption. We also found similar protein abundances in the corona for the two metals demon-409

strated by KMC simulation results. 𝛼 s1-casein dominates the adsorption as the most abundant pro-410

tein on aluminum surfaces, with bovine serum albumin being the least abundant. We found a small411

difference in the predicted corona content between the two metals: 𝛽-casein and 𝛽-lactoglobulin412

prefer Al-100 and Al-110 to iron, while 𝛼s1-casein prefers Fe-100 and Fe-110 over aluminum.413

Although the adsorption energy regulates the interaction strength between proteins and surfaces,414

the mass concentration of proteins in the solution has a major effect on the amount of protein ad-415

sorbed onto the surface. Expanding the milk model by adding lactose into the mix did not alter the416

ranking of protein abundance in the corona. Despite the high concentration in the milk, lactose417

does not exceed the mass abundance of specific proteins such as AS1C due to its small size. In our418

model, it essentially makes a thin monolayer on the surface.419

Overall, our freely accessible multiscale computational model [26] allows us to make predictions420

of the binding strength, preferred orientations, and relative abundance of the specified molecules421

on the specified material surfaces or nanoparticles and thus gives an insight into the mechanisms422

of fouling. We can compare different materials in terms of the protein binding affinity and corona423

content and optimize the processes in food and chemical industry. The presented methodology can424

be easily extended to other molecules, materials, and contexts involving the bionano interface such425

as environmental safety, health, medical devices, or toxicology.426
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