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Abstract The ferromagnetic resonance (FMR) spectra of oriented and non oriented assemblies of linear 

magnetosome chains are calculated by solving the stochastic Landau–Lifshitz equation. The 

dependence of the shape of the FMR spectrum of a dilute assembly of chains on the particle diameter, 

the number of particles in a chain, the distance between the centers of neighboring particles, the mutual 

orientation of the cubic axes of particle anisotropy, and the value of the magnetic damping constant is 

studied. It is shown that FMR spectra of non oriented chain assemblies depend on the average particle 

diameter at a fixed thickness of the lipid magnetosome membrane, as well as on the value of the 

magnetic damping constant. At the same time, they are practically independent of the number Np of 

particles in the chain under the condition Np  10. The FMR spectra of non oriented assemblies of 

magnetosome chains are compared with that of random clusters of interacting spherical magnetite 

nanoparticles. The shape of FMR spectra of both assemblies is shown to differ appreciably even at 

sufficiently large values of filling density of random clusters.  
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1. Introduction 

Magnetotactic bacteria are living organisms that grow within themselves magnetite 

nanoparticles called magnetosomes [1-4]. In contrast to chemically synthesized magnetite 

nanoparticles [5,6], magnetosomes have a perfect crystal structure, a narrow size distribution, and a 

high saturation magnetization close to that of bulk magnetite. In particular, magnetotactic bacteria M. 

gryphiswaldense produce linear chains of quasi-spherical magnetite nanoparticles with sizes ranging 

from 30 to 50 nm [1,2,7-9]. However, there are also magnetotactic bacteria that produce elongated 

magnetite nanoparticles [1,2,10,11]. 

A linear chain of uniformly magnetized magnetosomes grown inside a magnetotactic bacterium 

is a kind of magnetic needle that helps the bacterium navigate in the weak Earth's magnetic field in 

search of the best habitat [1-4]. Chains of magnetosomes are frequently found in weakly magnetized 

fossil rocks and bottom sediments, the study of which provides valuable information about the 

geological and biological past of the Earth [3,4,12,13]. Magnetosome assemblies are very promising 

also for application in biomedicine [3,5]. The properties of magnetic nanoparticle assemblies are often 

characterized by measuring ferromagnetic resonance (FMR) spectra [14,15]. The analysis of FMR 

spectrum makes it possible to determine the effective magnetic field in the sample under study, which 

depends on the particle saturation magnetization, the type of magnetic anisotropy, the direction of the 

particle easy anisotropy axes, and other parameters. In addition, the FMR spectrum is sensitive to the 

presence of magnetostatic interactions in dense assemblies of magnetic nanoparticles. Thus, 

ferromagnetic resonance spectroscopy is a promising technique to study magnetic properties of 

magnetosome assemblies [7-9,16-23]. However, the FMR spectra depend on many magnetic and 

geometric parameters of the nanoparticles. Therefore, the interpretation of FMR spectra is a non-trivial 

problem [16,17,20-25]. For correct interpretation of the FMR spectra, it is highly desirable to use the 

results of detailed micromagnetic modeling, which takes into account the main physical factors 

affecting the FMR spectra, including the effect of strong magneto-dipole interaction in magnetosome 

chains. 
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Both magnetosomes grown in the laboratory by various types of magnetotactic bacteria [7-

9,16-19] and particles found in natural samples of silt and lake sediments [16,17,20-23] are 

experimentally studied. It is important that the experimental FMR spectra of magnetosome chains have 

characteristic differences from that of assemblies with a random arrangement of nanoparticles in the 

sample [7,16-23]. This helps to detect the presence of magnetosome chains in a natural sample, which 

is important for paleomagnetic studies. Nevertheless, the problem of comparing the FMR spectra of 

magnetosome chains and random assemblies of magnetite nanoparticles is far from a complete 

solution and requires further investigation. 

Note that the theoretical description of the FMR spectra of assemblies of magnetosome chains 

is carried out, as a rule, on the basis of simplified models [22-25], in which the behavior of a 

magnetosome chain in an alternating (ac) high-frequency magnetic field is replaced by the behavior of 

a uniformly magnetized ellipsoid with an appropriately selected demagnetizing factor. As a result, 

important information about the internal geometry of the chain, that is, about the particle diameters, the 

number of particles in the chain, the characteristic distance between the particle centers, the mutual 

orientation of the particle cubic anisotropy axes, etc., is completely lost. In addition, in the approach 

[22-25], only the position of the resonance peak is actually calculated, whereas the shape of the 

resonance curve is assumed to be Lorentzian or Gaussian, the width of the curve being an adjustable 

parameter. Obviously, based on such a simplified model, it is practically impossible to obtain 

information about the internal geometry of the chain and a number of particle magnetic parameters. 

It has been shown recently [26-28] that the true geometry of the magnetosome chains has a 

great influence on the magnetostatic properties of the chain assembly. In this regard, it should be noted 

that the correct calculation of the FMR spectra of magnetic nanoparticles assemblies can be carried out 

by solving the stochastic Landau–Lifshitz equation [29–35]. This approach makes it possible, when 

calculating the FMR spectra, to take into account all the details of the geometric structure of 

magnetosome chains, the influence of strong magnetic dipole interaction between the particles of the 

chain, as well as the effect of thermal fluctuations of magnetic moments of nanoparticles at a finite 

temperature. 

Using this approach, in this paper the FMR spectra of oriented assemblies of linear chains of 

quasi-spherical magnetosomes are calculated depending on the direction of the external magnetizing 

field with respect to the common axis of the chains, the FMR spectra of randomly oriented assemblies 

being obtained by the corresponding angle-averaging. Various types of mutual orientation of cubic 

easy anisotropy axes of the chain particles are considered. The FMR spectra of randomly oriented 

assemblies of magnetosome chains are compared with that of random clusters of interacting spherical 

magnetite nanoparticles. The theoretical results obtained seem to be helpful for correct interpretation 

the large amount of experimental data [1-4,7-9,16-23] accumulated to date for assemblies of 

magnetosome chains. 

 

2. Numerical simulation 

Consider a dilute assembly of linear chains of magnetosomes consisting of Np spherical 

nanoparticles of average diameter D. Dynamics of the unit magnetization vector i


 of i-th single-

domain nanoparticle of the chain is governed by stochastic Landau-Lifshitz equation [29-32]  
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The cubic magneto-crystalline anisotropy energy of Fe3O4 nanoparticles is 
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where V = D2/6 is the volume of spherical particle, Kc is the cubic anisotropy constant, and (e1i, e2i, 

e3i) is the set of orthogonal unit vectors that determine the spatial orientations of the cubic easy 

anisotropy axes of i-th nanoparticle of the chain. 

For nearly spherical uniformly magnetized nanoparticles the magnetostatic energy of the chain 

can be represented as the energy of the point interacting dipoles located at the particle centers ri 
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where nij is the unit vector along the line connecting the centers of i-th and j-th particles, respectively. 

Zeeman energy of the assembly in a applied magnetic field H and a weak perpendicular ac 

magnetic field H1sin(t) is given by 
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where  = 2f is the angular frequency of the ac magnetic field. 

The thermal fields ithH ,


 acting on various nanoparticles of the chain are statistically 

independent, with the following statistical properties [29] of their components  
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Here kB is the Boltzmann constant,   is the Kroneker symbol, and (t) is the delta function.  

It is well known [14,15,33-35] that the power absorbed by the assembly per unit time and per 

unit volume is proportional to the area of the assembly hysteresis loop 
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where m is the reduced magnetic moment of the assembly. To numerically calculate the power 

absorbed by an assembly of superparamagnetic nanoparticles in ac magnetic field H1(t), it is 

convenient to rewrite Eq. (7) in the form of the time-averaged integral 
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where t is a certain time interval significantly exceeding the period of oscillations of the ac magnetic 

field,  = 2/. On the other hand, using the small amplitude of the ac magnetic field, the same 

quantity can be expressed in terms of the imaginary part of the magnetic susceptibility of the assembly 

[15, 36] 

  2

1, HfHfP   .      (9) 

Comparison of Eqs. (8) and (9) makes it possible to obtain the imaginary part of the magnetic 

susceptibility  fH ,   of the assembly as a function of the magnetizing field H. 

In this paper the calculation of the specific absorbed power is carried out using equation (8) for 

dilute assemblies of linear chains of magnetosomes with saturation magnetization Ms = 460 emu/cm3 

and cubic magnetic anisotropy constant Kc = - 1.1105 erg/cm3 [37]. The average diameter of particles 

in a chain varied in the range D = 20–40 nm, the number of nanoparticles in chain Np = 5 -30, the 

magnetic damping constant is taken as κ = 0.05–0.5. The frequency of ac magnetic field exciting the 

resonance is f = 4.9 GHz (S-band) or f = 9.8 GHz (X-band), the amplitude of a weak ac magnetic field 

is H1 = 10 Oe. 

For completeness of the study, we considered several characteristic types of mutual orientation 

of the cubic anisotropy axes of the nanoparticles in a chain. For the case of a completely random 

orientation of the cubic axes (index R), the set of orthogonal unit vectors (e1i, e2i, e3i), i = 1,2, …, Np is 
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randomly oriented in each nanoparticle. The case when one of the cubic easy anisotropy axes of each 

particle is parallel to the chain axis is denoted below by the index E. In this case, the directions of the 

other cubic anisotropy axes of the particles are randomly oriented. Similarly, the case when one of the 

hard axes of cubic anisotropy is parallel to the chain axis, while the other axes are randomly oriented, 

is denoted below by the index H. 

To obtain statistically significant results, the FMR spectra of a chain assembly are averaged 

over a sufficiently large number of independent numerical experiments, Nexp = 20–30. In each 

experiment, a new linear chain of Np interacting spherical magnetite nanoparticles was created, the 

directions of the cubic anisotropy axes of particles being oriented according to the accepted chain 

anisotropy. 

When solving the stochastic Landau-Lifshitz equation, the numerical time step is kept to be 

1/30 of the characteristic precession period of the unit magnetization vectors of the particles, H ~ 

1/1Hef. Such a small time step is necessary to accurately describe the precession of unit magnetization 

vectors in the chain. In addition, the total time interval of the calculation covered at least 200 periods 

of the ac magnetic field, while the time averaging of the integral in Eq. (8) occurred only over the last 

quarter of the total number of periods, when the dynamics of the unit magnetization vectors of the 

particles became stationary. Thus, the time interval t in Eq. (8) exceeds 50 periods of ac magnetic 

field. Averaging the numerical results for the absorbed power of the assembly over a sufficiently long 

time interval t and over a fairly representative set Nexp of independent realizations of chains with a 

fixed number of nanoparticles and type of chain anisotropy accepted makes it possible to obtain 

statistically significant results for the magnetic susceptibility of a dilute assembly of linear chains. 

 

3. Results and discussion 

An analysis of transmission electron microscope (TEM) images [1,2,8,38,39] shows a fairly 

large variability in the geometry of magnetosome chains created by bacteria of various strains. 

Namely, the average diameter of particles, the characteristic distance between their centers, the 

average number of particles in a chain, etc., change depending on the bacteria strains. Therefore, it is 

important to study the dependence of the FMR spectra on the specified chain geometric parameters. In 

this paper, we restrict ourselves to detailed modeling of the FMR spectra of chains of quasi-spherical 

magnetosomes with diameters in the range D = 20–40 nm. An important geometrical parameter of the 

chain is also the average distance a between the centers of particles in the chain, since this distance 

determines the amplitude of the dipole field Hdip, acting between the particles of the chain. Based on 

the TEM data [1,2,7,8,38,39], it can be concluded that the nearest distance between the surfaces of 

neighboring spherical particles is the sum of the thicknesses of the magnetosome shells 2Ten, where Ten 

= 4 – 6 nm is the characteristic thickness of the lipid magnetosome shell. The latter, apparently, weakly 

depends on the nanoparticle diameter. If this hypothesis is correct, then the average distance between 

the particle centers in a chain is a = D + 2Ten. 

When modeling the FMR spectra of magnetosome chains, it is important to choose the 

adequate magnetic damping constant κ of magnetic nanoparticles. Unfortunately, experimental data for 

this quantity for assemblies of magnetic nanoparticles are scarce [40]. Due to the well-known 

perfection of the crystal structure and shape of magnetosomes, in this paper the most of the 

calculations are carried out for the case of moderate damping, κ = 0.05 - 0.1, but the case of high 

damping, κ = 0.3, 0.5, is also briefly considered. Note that it is experimentally possible [9,41] to create 

dilute assemblies of magnetosome chains oriented in one direction in a strong external magnetic field. 

This makes it possible to obtain FMR spectra for oriented assemblies of magnetosome chains 

depending on the angle of an external magnetic field with respect to the common orientation axis of 

the chains [9]. As will be shown below, the FMR spectra of oriented chain assemblies strongly depend 

on the specific geometric structure and magnetic characteristics of magnetosomes.  

In this work, we first calculate the FMR spectra of oriented assemblies of chains as a function 

of the angle  of the external magnetic field with respect to the orientation axis of the chains. The 

spectrum of the randomly oriented assembly of chains was then calculated by the angle averaging of 

partial FMR spectra calculated with a fairly small step  ~ 5-7.5. Further we discuss the effect of 



5 

geometric and magnetic parameters on the FMR spectra of oriented and non oriented dilute assemblies 

of chains of quasi-spherical magnetosomes. The numerical results obtained are presented as 

dependences of the magnetic susceptibility of a chain assembly on its geometric and magnetic 

parameters, since the magnetic susceptibility is a fundamental physical quantity that characterizes the 

magnetic properties of the assembly. 

 

0 500 1000 1500

0.0

0.1

0.2

0.3

0.4
S band

 = 5o

D = 40 nm

D = 35 nm

m
a
g

n
e
ti

c
 s

u
s
c
e
p

ti
b

il
it

y
, 

''

H  (Oe)

D = 25 nm

(a)

0 1000 2000 3000

0.0

0.1

0.2

0.3

(b)

m
a
g

n
e
ti

c
 s

u
s
c
e
p

ti
b

il
it

y
, 

'' S band

 = 45o

D = 40 nm
D = 35 nm

H  (Oe)

D = 25 nm

 

0 1000 2000 3000

0.0

0.1

0.2 D = 25 nm

D = 35 nm

(c)

m
a
g

n
e
ti

c
 s

u
s
c
e
p

ti
b

il
it

y
, 

'' S band

 = 75o

D = 40 nm

H  (Oe)  

0 1000 2000 3000

0.0

0.1

0.2

S band

 

 

 = 45o 

D = 30 nm

Ten = 4 nm

 = 0.1

m
a

g
n

e
ti

c
 s

u
s

c
e

p
ti

b
il

it
y

, 

''

H  (Oe)

  Np = 5

  Np = 10

  Np = 20

  Np = 30

(d)
   

0 1000 2000 3000

0.0

0.1

0.2

S band   = 0.1

   = 0.3

   = 0.5

m
a
g

n
e
ti

c
 s

u
s
c
e
p

ti
b

il
it

y
, 

''

 

 

 = 45o 

D = 30 nm

Np = 20

Ten = 4 nm

H  (Oe)(e)

 
Figure 1: (a)-(c) Comparison of FMR spectra of oriented chains of magnetosomes with different 

particle diameters D for angles  = 5, 45 and 75, respectively. The number of particles in the chain 

Np = 20, the magnetic damping constant  = 0.1. (d) The influence of the FMR spectrum on the 

number of particles in the chain Np. (e) Dependence of the FMR spectra on the value of the magnetic 

damping constant . The thickness of the lipid membrane of magnetosomes is Ten = 4 nm, the 

frequency of the ac magnetic field is f = 4.9 GHz (S-band). The chain anisotropy is of type E for Fig. 

1a-1c and type R for Figs 1d, 1e, respectively. 

 

Figs. 1a-1c show the dependence of the FMR spectra of an oriented assembly of chains on the 

particle diameter D at a fixed thickness of the lipid shell Ten = 4 nm and at different directions of the 

magnetizing field with respect to the orientation axis of the assembly,  = 5, 45 and 75, 

respectively. As shown in Figs. 1a, 1b, the dependence of the position of the resonance peak on the 

particle diameter is most pronounced at angles   45, but it becomes insignificant at  > 75. For 

example, according to Fig. 1a, at  = 5 the resonance peak for chains with diameter D = 25 nm occurs 

at H = 760 Oe, while for chains with D = 40 nm the resonance field is much lower, H = 530 Oe. To 

explain this effect, it is worth noting that the dipole field in the middle part of a long chain magnetized 

along its axis can be estimated as      321332 DTMH ensdip   , where (3)  1.2 is the value of 

Riemann zeta function [42]. With a shell thickness Ten = 4 nm, from this formula one obtains Hdip = 

503 Oe at D = 25 nm, and Hdip = 670 Oe for D = 40 nm, respectively. Thus, for small angles  the 

dipole field acting along the chain axis decreases as a function of particle diameter. Accordingly, the 

FMR peak for a chain of particles of smaller diameter should be observed in a larger magnetizing field. 

As Fig. 1e shows, with an increase in the number of particles in the chain from 5 to 20, the 

position of the FMR resonance peak shifts to lower fields, but for Np > 20 the position and shape of the 

FMR resonance peak remain practically unchanged. Calculations show that the characteristic value of 

the dipole field Hdip stabilizes already on the first two or three periods of the chain and does not depend 



6 

on its length. According to the experimental data [1,7,19], in the chains of M. gryphiswaldense 

bacteria the characteristic number of magnetosomes is Np = 20 - 25. Therefore, in this work most of the 

calculations were carried out for the magnetosome chains with Np = 20. 

As noted above, the experimental data on the value of magnetic damping constant in 

assemblies of magnetic nanoparticles are scarce. Since magnetosomes grow inside a bacterium under 

strict genetic control, they turn out to be the most perfect magnetic particles in terms of their crystal 

structure and shape. Therefore, it is reasonable to assume that the magnetic damping constant for 

magnetosomes takes relatively small values,   0.1. These values were mainly used in the 

calculations. However, the value of the magnetic damping constant has a strong influence on the shape 

of the FMR spectrum peak. As Fig. 1f shows, as  increases, the position of the FMR peak does not 

change, but its height decreases significantly, while the peak width increases. 

There are convincing arguments [41] that E-type anisotropy is realized in magnetosome chains 

as a rule. This means that one of the equivalent cubic easy anisotropy axes of every particle is parallel 

to the chain axis. It is agued [41] that as the chain grows, new magnetosomes sequentially appear at the 

ends of the chain and their formation occurs in a strong dipole field directed along the chain axis. On 

the other hand, it was shown [39] that the formation of magnetosomes in a bacterium can occur 

simultaneously in many germ vesicles along its length. In this case, it is not clear what reason can lead 

to the occurrence of E-type correlated anisotropy in the chain. Rather, one would expect a random 

orientation of the cubic anisotropy axes of individual nanoparticles, that is, the formation of R-type 

chain anisotropy. Note that different types of chain anisotropy can be modeled by choosing properly 

the orientation of the reference vectors (e1i, e2i, e3i) of individual nanoparticles of the chain in Eq. (2). 
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Figure 2: Dependence of the FMR spectra of an oriented assembly of chains on the relative orientation 

of the cubic anisotropy axes in the particles of the chain for different directions of the magnetizing 

field: (a) θ = 15º, (b) θ = 45º, and (c) θ = 75º. Indexes mark various types of chain anisotropy: R 

corresponds to random chain anisotropy, E - one of the cubic easy axes is parallel to the chain axis, H - 

one of the hard axes is parallel to the chain axis.  

 

In Fig. 2 we compare the FMR spectra of dilute oriented assemblies of magnetosome chains 

with different mutual orientations of the cubic anisotropy axes of individual particles within the chain 

for some directions of the magnetizing field. The number of particles in chains Np = 20, particle 

diameter D = 40 nm, membrane shell thickness Ten = 4 nm, magnetic damping constant  = 0.1. As 

Fig. 2 shows, the greatest difference in the position of the FMR peaks for chains with different types of 

anisotropy is observed at angles θ  15º. In addition, the height of the FMR peak for chains with 

random anisotropy turns out to be noticeably smaller than that for E and H anisotropy types, 

respectively. Thus, the type of chain anisotropy can have an effect on the shape of the FMR spectrum 

of an assembly of magnetosome chains. 

Let us now turn to the description of the FMR spectra of dilute non oriented assemblies of 

magnetosome chains. The latter were obtained by averaging partial FMR spectra of oriented 

assemblies over the azimuthal angle θ. Note that the FMR spectra of chains are averaged over the 

declination  even at the stage of calculating the FMR spectra of oriented assemblies, since for any 

type of chain anisotropy, the orientation of the cubic anisotropy axes in directions perpendicular to the 
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chain axis is random. The calculations presented in Fig. 3 are carried out for the chain anisotropy of 

type E, since this anisotropy type prevails [41], apparently, for quasi-spherical magnetosomes M. 

gryphiswaldense.  
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Figure 3: (a) Formation of the FMR spectrum of a non oriented assembly of magnetosome chains 

(black dots) as a result of angle averaging of partial FMR spectra of oriented assemblies calculated for 

various θ angles (solid color curves). (b) Comparison of the FMR spectrum of a non oriented assembly 

of magnetosome chains with the FMR spectra of a random assembly of magnetite clusters with 

different filling density h. (c), (e) Dependence of the magnetic susceptibility of non oriented chain 

assembly on the damping constant  at a fixed magnetosome diameter D = 35 nm, and on the average 

magnetosome diameter at a fixed value of  = 0.075, respectively. Figs. 3a, 3b – S band, Figs. 3c, 3d - 

X band. 

 

Fig. 3a explains the formation of the FMR spectrum of a non oriented assembly of 

magnetosome chains with E-type anisotropy (black dots) upon averaging partial FMR spectra of 

oriented assemblies over the angle θ. Partial FMR spectra at some angles θ are shown in Fig. 3a as 

solid colored curves. The number of particles in chains Np = 20, particle diameter D = 40 nm, 

membrane shell thickness Ten = 5 nm, magnetic damping constant  = 0.1. To obtain FMR spectrum of 

randomly oriented chain assembly partial FMR spectra were averaged with a step θ = 5º. As Fig. 3a 

shows, with an increase in the tilt angle of the magnetizing field θ from 0 to 75º, the peak of resonant 

absorption of the oriented assembly of chains shifts towards higher field values. Simultaneously, the 

peak height decreases. 

The shift in the position of the resonant peak of the oriented assembly is a consequence of the 

weakening of the component of the dipole field Hdip, which acts in the direction of the magnetizing 

field H, when the magnetic moments of the particles deviate from the axis of the chain. However, as 
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the angle increases, θ > 75º, when the magnetic moments of nanoparticles in a sufficiently strong 

magnetizing field become almost perpendicular to the chain axis, the position of the FMR peak does 

not shift further, whereas the magnetic susceptibility of the assembly increases. As Fig. 3a shows, due 

to the angle dependence of partial FMR peaks, the FMR spectrum of non oriented assembly of 

magnetosome chains is much wider than the width of the peaks of individual partial FMR spectra. This 

is a characteristic property of the FMR spectrum of non oriented assembly of magnetosome chains, 

which distinguishes it from the FMR spectra of random assemblies of magnetite nanoparticles. 

To confirm this conclusion, in Fig. 3b we compare the FMR spectrum of the non oriented 

assembly of chains shown in Fig. 3a, with the FMR spectra of a random assembly of clusters of 

interacting magnetite nanoparticles calculated for different cluster filling densities h = NpV/Vcl. Here, 

Vcl is the volume of a random cluster containing Np = 60 spherical magnetite nanoparticles of the same 

diameter D = 40 nm, randomly located in the cluster volume and having a random orientation of the 

cubic anisotropy axes. As Fig. 3b shows, the width of the FMR spectra of dilute  assemblies of random 

clusters increases with an increase in the filling density h  due to an increase in the intensity of the 

magneto-dipole interaction within the clusters. For example, at h = 0.308, when the average distance 

between particle centers in a dense random cluster is rather small,   DDL 2.16
31

 h , the width of 

the FMR spectrum of the assembly of random clusters at half maximum is approximately H = 1000 

Oe. Nevertheless, the width of FMR spectrum of non oriented assembly of chains at half maximum is 

much wider than this spectrum. It is approximately given by H = 1800 Oe. In addition, the shape of 

FMR spectrum of assembly of non oriented chains differs from the spectra of assemblies of random 

clusters by the presence of two local peaks at the fields H = 750 Oe and H = 2250 Oe, respectively. 

In Fig. 3c we compare the FMR spectra of assemblies of non oriented magnetosome chains 

with fixed diameter D = 35 nm for various values of the magnetic damping constant  = 0.05, 0.075, 

and 0.1, respectively. Obviously, with decreasing , the height of the magnetic susceptibility peak of 

the assembly increases, while the peak width somewhat decreases. On the other hand, as Fig. 3e 

shows, at a fixed value of , the height of the magnetic susceptibility peak decreases with increasing 

particle diameter. Note that the absorption peaks in Figs. 3c, 3e are shifted to the right, since in a non 

oriented assembly of chains the probability of finding a chain oriented at angle θ to the magnetizing 

field direction is proportional to sinθdθ. It is increasing function of θ in the range 0 < θ < 90º. 

Based on the data given in Figs. 3c, 3e, one can conclude that the FMR spectra of assemblies of 

non oriented chains of magnetosomes depend significantly on the value of the magnetic damping 

constant , and at a fixed thickness of the lipid shell of magnetosomes, on the average particle 

diameter D. At the same time, the calculations performed show that the dependence of the FMR 

spectra of non oriented assemblies of chains is practically independent of the number of particles in the 

chain under the condition Np  10. 

Fig. 4 shows the derivatives of the magnetic susceptibility with respect to the magnetizing field 

for non oriented assemblies of linear chains of quasi-spherical magnetosomes. Spectra of this type are 

usually measured in ferromagnetic resonance experiments on assemblies of magnetic nanoparticles [7-

9, 16-23]. As Fig. 4a shows, the depth of the sharp negative peak at H  4000 Oe, which is typical for 

non oriented assemblies of linear chains of magnetosomes [7-9, 16-18], depends significantly on the 

value of the magnetic damping constant. At the same time, according to Fig. 4b, the position of this 

negative peak depends on the average diameter of the nanoparticles in the chain. 
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Figure 4: Derivatives of the magnetic susceptibility with respect to the magnetizing field for non 

oriented assemblies of linear chains of quasi-spherical magnetosomes: (a) dependence of the spectra 

on the magnetic damping constant at a fixed average nanoparticle diameter D = 35 nm, (b) dependence 

of the spectra on the nanoparticle diameter at magnetic damping constant  = 0.075. 

 

4. Conclusions 

 In this paper the FMR spectra of oriented and non oriented assemblies of magnetosome chains 

are calculated by solving the stochastic Landau–Lifshitz equation. Calculations of imaginary 

component of high-frequency magnetic susceptibility of assemblies in a magnetizing field are carried 

out with a small time step, which is 1/30 of the characteristic precession time of the particle unit 

magnetization vectors. In addition, the power absorbed by the assembly is averaged over a sufficiently 

large number of periods of the ac magnetic field due to the stochastic dynamics of the unit 

magnetization vectors. This makes it possible to obtain statistically reliable results for the high-

frequency magnetic susceptibility of a dilute assembly of linear chains of magnetosomes.  

In this paper, in contrast to the simplified models [22-25], it is shown that using the solution of 

the stochastic Landau–Lifshitz equation one can take into account all the important details of the 

geometric structure of magnetosome chains, which significantly affect the shape of the FMR spectrum 

of a chain assembly. For a fixed thickness of the lipid membrane of magnetosomes the FMR spectra of 

both oriented and non oriented chain assemblies are shown to depend on the average particle diameter. 

However, the dependence of the FMR spectra on the number of particles in the chain appears only for 

short, dangling chains, with the number of particles Np < 10. We also studied the dependence of the 

FMR spectra of oriented chain assemblies on the mutual orientations of the cubic easy anisotropy axes 

of particles along the chain. It is found that for chains with a random orientation of the cubic easy axes 

the height of the FMR peak is noticeably smaller than that for the other anisotropy types considered. It 

is also found that the FMR spectrum of a chain assembly essentially depends on the value of the 

phenomenological magnetic damping constant. Finally, the FMR spectra of non oriented assemblies of 

magnetosome chains were compared with the FMR spectrum of a dilute assembly of random clusters 

of spherical nanoparticles with different cluster filling density h. With an increase h, that is, with an 

increase in the intensity of the magneto-dipole interaction in the clusters, the width of the FMR peak of 

an assembly of random clusters increases significantly. Nevertheless, it remains much smaller than the 

peak width of an assembly of chains even for a very dense clusters with h = 0.308, when the average 

distance between the particle centers in the cluster is only L  1.2 D. The shape of the FMR spectra for 

the two types of assemblies considered also differs.  

The information obtained in this paper may help improve the interpretation of the FMR spectra 

of various assemblies of magnetic nanoparticles. 
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