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Abstract7

Optimization of Josephson oscillators requires a quantitative understanding of their microwave8

properties. A Josephson junction has a geometry similar to a microstrip patch antenna. However,9

it is biased by a dc-current, distributed over the whole area of the junction. The oscillating electric10

field is generated internally via the ac-Josephson effect. In this work I present a distributed, active11

patch antenna model of a Josephson oscillator. It takes into account the internal Josephson elec-12

trodynamics and allows determination of the effective input resistance, which couples Josephson13

current to cavity modes in the transmission line formed by the junction. The model provides full14

characterization of Josephson oscillators and explains the origin of low radiative power efficiency.15

Finally, I discuss the design of an optimized Josephson patch oscillator, capable of reaching high16

efficiency and radiation power for emission into free space.17

Introduction18

Flux-flow oscillator (FFO) is the most well studied Josephson source of high-frequency electro-19

magnetic waves (EMW) [1-12]. FFO was used in the first direct demonstration of Josephson emis-20

sion by Yanson, et.al., back in 1965 [13,14]. State of the art FFOs, developed by Koshelets and21

co-workers show a remarkable performance in terms of tunability and linewidth [6,9,12]. However,22
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they emit very little power into free space [11,13,15,16]. The low radiation power efficiency, i.e.,23

the ratio of radiated to dissipated power, is commonly attributed to a large impedance mismatch24

between a Josephson junction (JJ) and free space [10,16,17]. But there is no consensus about the25

value of junction impedance: is it very small [16], or vice-versa very large [10]? At present there26

is no clear understanding what causes impedance mismatching and what geometrical parameters27

should be changed for solving the problem. Discovery of significant THz emission from stacked28

intrinsic JJs in layered high-𝑇𝑐 cuprates [18-27] further actuated the necessity of a quantitative un-29

derstanding of microwave emission from Josephson oscillators.30

Figure 1 (a) shows a sketch of a typical FFO. It is based on a sandwich-type (overlap) JJ with the31

length, 𝑎 ≫ 𝜆𝐽 , much larger than the Josephson penetration depth, and both in-plane sizes much32

larger than the thickness of the junction interface, 𝑑 ≪ 𝑏 ≪ 𝑎. The in-plane magnetic field, 𝐻𝑦, in-33

troduces a chain of Josephson vortices (fluxons) in the JJ. The dc-bias current, 𝐼𝑏, exerts a Lorentz34

force, 𝐹𝐿 , and causes a unidirectional fluxon motion. Upon collision with the junction edge, fluxons35

annihilate. The released energy produces an EMW pulse, which is partially emitted, but mostly re-36

flected backwards in the JJ. Propagation and reflection of FFO pulses in the transmission line (TL),37

formed by the JJ, leads to formation of standing waves. The corresponding cavity mode resonances38

are manifested by Fiske steps in the current-voltage (𝐼-𝑉) characteristics [16,28-32]. FFOs exhibit39

sharp emission maxima at Fiske steps [9,12,13]. Such a conditional emission indicates that several40

additional and equally important phenomena (apart from the ac-Josephson effect) are involved in41

FFO operation [10]. The excitation of high-quality factor, 𝑄 ≫ 1, cavity modes is one of them.42

Geometry is playing a decisive role for characteristics of microwave devices. Although calcula-43

tions of radiative impedances of JJs do exist [33], they were not made for the FFO geometry. From44

the outside, the overlap JJ looks like a well known microstrip patch antenna [34-36]. The differ-45

ence, however, is inside. A standard patch antenna has a point-like feed-in port, while in a JJ the46

bias current is distributed over the whole area of the JJ. Furthermore, the oscillating component47

of the current is actively generated inside the JJ by means of the ac-Josephson effect and the flux-48
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flow phenomenon. Therefore, a JJ can be considered as an actively pumped patch antenna with a49

distributed feed-in current.50

In this work I present a distributed, active patch antenna model of a Josephson oscillator. It ex-51

pands the TL model of a patch antenna [36], taking into account the spatial distribution of the in-52

put current density in a JJ, described by the perturbed sine-Gordon equation. In the presence of53

magnetic field and fluxons, the oscillating current is distributed nonuniformly within the junction.54

This nonuniformity is essential for the FFO operation. It determines the variable input resistance,55

which enables the coupling of Josephson current to cavity mode resonances in the junction. The56

presented model allows application of many of patch antenna results and facilitates full characteri-57

zation of Josephson oscillators, including the emission power, directivity and power efficiency. The58

model explains the origin of low power efficiency for emission in free space and clarifies what pa-59

rameters can be changed to improve FFO characteristics. Finally, I discuss the design of a Joseph-60

son patch oscillator, which can reach high power for emission in free space with the optimal power61

efficiency, ∼ 50%.62
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Figure 1: (Color online). (a) A sketch of the Josephson flux-flow oscillator. From outside it has
a patch antenna geometry. However, inside it is driven by a distributed dc-current and the oscillat-
ing voltage is generated internally by a combination of the ac-Josephson effect and the flux-flow
phenomenon. (b) Clarification of spatial and angular coordinates. (c) An equivalent circuit of the
Josephson junction. The ac-Josephson effect provides a source of the high-frequency alternating
current with the fixed amplitude of current density, 𝐽𝑐0. The oscillating voltage at the junction
edges is generated by means of the input junction impedance, 𝑍in, and is distributed between the
internal dissipative resistance, 𝑅dis, and the external radiative resistance, 𝑅rad, connected by the
transmission line impedance 𝑍TL.
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The active patch antenna model63

Spatial-temporal distribution of voltage in a JJ is described by the equation (see ch.9 in Ref. [31]):64

𝜕2𝑉

𝜕𝑥2 + 𝜕2𝑉

𝜕𝑦2 − 1
𝑐2

0

𝜕2𝑉

𝜕𝑡2
= 𝐿□

𝜕𝐽𝑧

𝜕𝑡
, (1)65

where 𝑐0 is the (Swihart) velocity of EMWs in the TL formed by the JJ and 𝐿□ is the inductance66

of JJ per square. 𝐽𝑧 is the current density through the JJ, which has Cooper pair and quasiparticle67

(QP) components,68

𝐽𝑧 = 𝐽𝑐0 sin 𝜂 + 𝑉

𝑟QP
. (2)69

Here 𝐽𝑐0 is the Josephson critical current density, 𝜂 - the Josephson phase difference and 𝑟QP =70

𝑅QP𝑎𝑏 - the QP resistance per unit area.71

Eq. (1) is the equation for an active TL [37] with a distributed feed-in current density 𝐽𝑧. There-72

fore, a JJ has many similarities with the microstrip patch antenna. However, there are three main73

differences:74

(i) The feed-in geometry. A patch antenna has a point-like feed-in port, through which the oscil-75

lating current is applied [34-36]. The FFO is biased by a dc current, distributed over the whole JJ76

area.77

(ii) The excitation scheme. A patch antenna is a linear oscillator, pumped by a harmonic signal. To78

the contrary, a JJ is biased by a dc-current and the oscillatory component is generated inside the JJ79

via the ac-Josephson effect and the flux-flow phenomenon.80

(iii) Slow propagation speed of EMWs inside the JJ, 𝑐0 ≪ 𝑐. This is caused by a large kinetic in-81

ductance of superconducting electrodes. For atomic scale intrinsic JJs is layered cuprates it can be82

almost 1000 times slower than 𝑐 [32]. Because of that, the wavelength inside the JJ is much smaller83

than in free space, 𝜆 ≪ 𝜆0. Therefore, a JJ corresponds to a patch antenna with extraordinary large84

effective permittivity, 𝜖∗𝑟 = (𝑐/𝑐0)2.85
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Dynamics of a JJ is described by a nonlinear perturbed sine-Gordon equation,86

𝜕2𝜂

𝜕𝑥2 − 𝜕2𝜂

𝜕𝑡2
− 𝛼

𝜕𝜂

𝜕𝑡
= sin 𝜂 − 𝐽𝑏 . (3)87

It follows from Eqs. (1) and (2), taking into account the ac-Josephson relation, 𝑉 = (Φ0/2𝜋)𝜕𝜂/𝜕𝑡.88

Eq. (3) is written in a dimensionless form with space, 𝑥 = 𝑥/𝜆J, normalized by 𝜆J, and time, 𝑡 =89

𝜔p𝑡, by the Josephson plasma frequency, 𝜔p, Here 𝛼 is the QP damping factor, and 𝐽𝑏 = 𝐽𝑏/𝐽𝑐090

is the normalized bias current density, which originates from the 𝜕2𝑉/𝜕𝑦2 term in Eq.(1) [38]. In91

what follows, “tilde" will indicate dimensionless variables, �̃� = 𝜔/𝜔p and �̃� = 𝜆J𝑘 . Definition and92

interconnection between different variables is clarified in the Appendix.93

Radiative resistance of a patch antenna94

A rectangular patch antenna has two radiating slots, which correspond to the left and right edges of95

the JJ in Fig. 1 (a). The slots can be considered as magnetic current lines (magnetic dipoles) [39].96

The radiation power from one slot is97

𝑃1 = 𝐺1
|𝑣(0, 𝑎) |2

2
, (4)98

where |𝑣(0, 𝑎) | is the amplitude of voltage oscillations at the slot (𝑥 = 0, 𝑎) and 𝐺1 is the radia-99

tive conductance of the single slot. Low-𝑇𝑐 JJs are operating at sub-THz frequencies, for which the100

wave length in free space is large, 𝜆0 ≫ 𝑏 ≫ 𝑑. In this limit [36,39],101

𝐺1 =
4𝜋
3𝑍0

[
𝑏

𝜆0

]2
, (𝑏 ≪ 𝜆0) (5)102

where 𝑍0 =
√︁
𝜇0/𝜖0 ≃ 376.73 (Ω) is the impedance of free space.103

To calculate the total radiation power from both slots one has to take into account the mutual ra-104

diative conductance, 𝐺12, and the array factor 𝐴𝐹 [36]. 𝐺12 is originating from a cross product of105
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electric and magnetic fields generated by different slots. For 𝜆0 ≫ 𝑏 ≫ 𝑑 it is equal to [36,40]106

𝐺12 =
𝜋

𝑍0

[
𝑏

𝜆0

]2 𝜋∫
0

𝐽0 (𝑘0𝑎 sinΘ) sin3 Θ𝑑Θ. (6)107

Here 𝐽0 is the zero-order Bessel function, 𝑘0 = 2𝜋/𝜆0 is the wave number in free space and the108

angle Θ is defined in Fig. 1 (b). For the 𝑛-th cavity mode,109

𝑘𝑛 =
𝜋

𝑎
𝑛, 𝜔𝑛 = 𝑐0𝑘𝑛, (7)110

the argument of 𝐽0 becomes (𝑐0/𝑐)𝜋𝑛 sinΘ. Since 𝑐0 ≪ 𝑐, 𝑘0𝑎 is small. Expanding in Eq. (6),111

𝐽0(𝑥) ≃ 1 − 𝑥2/4 (for 𝑥 ≪ 1), we obtain:112

𝐺12 ≃ 𝐺1

[
1 − 2

5

(𝑐0
𝑐
𝜋𝑛

)2
]
,

(𝑐0
𝑐
𝜋𝑛 ≪ 1

)
. (8)113

It is seen that the mutual conductance for a JJ with thin electrodes (slow 𝑐0) is not negligible and114

can be as big as the single slot conductance 𝐺1, Eq. (5).115

The array factor takes into account the interference of electromagnetic fields from the two slots in116

the far field. It depends on the separation between the slots, 𝑎, the relative phase shift, 𝛽, and the117

direction (𝜑,Θ). Since radiation from a patch antenna is induced by magnetic current lines, it is118

more intuitive to consider the interference of magnetic fields, 𝐻1 + 𝐻2 = 𝐴𝐹 𝐻1. For the geometry119

of Figs. 1 (a) and (b) it can be written as [36,40]120

𝐴𝐹 = 2 cos
[
1
2
(𝑘0𝑎 sinΘ sin 𝜑 + 𝛽)

]
. (9)121

Odd-number cavity modes have antisymmetric voltage oscillations, but symmetric magnetic cur-122

rents, 𝛽 = 0. This leads to a constructive interference with the maximum 𝐴𝐹 = 2 perpendicular123

to the patch along the 𝑧-axis. For even modes its vice-versa, 𝛽 = 𝜋, and a destructive interference124

leads to a node, 𝐴𝐹 = 0, along the 𝑧-axis.125
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The total emission power is126

𝑃rad =
( |𝑣(0) |2 + |𝑣(𝑎) |2)𝐺1 ± 2|𝑣(0) | |𝑣(𝑎) |𝐺12

2
, (10)127

where plus/minus signs are for odd/even modes, respectively. For equal amplitudes, |𝑣(0) | =128

|𝑣(𝑎) |,129

𝑃rad =
|𝑣(0) |2
2𝑅rad

, (11)130

with the effective radiative resistance131

𝑅rad =
1

1 ± 𝐺12/𝐺1

3𝑍0
8𝜋

[
𝜆0
𝑏

]2
. (12)132

Determination of voltage amplitudes133

To calculate 𝑃rad we need voltage amplitudes at JJ edges. Within the TL model of patch antennas,134

𝑣(𝑥) is obtained by decomposition into a sum of cavity eigenmodes [34]. For JJs a similar ap-135

proach is used for the analysis of Fiske steps [16,29-31]. To separate dc and ac components, we136

write137

𝜂(𝑥, 𝑡) = 𝑘𝑥 + 𝜔𝑡 + 𝜙(𝑥, 𝑡). (13)138

Here 𝑘 = 2𝜋(Φ/Φ0)/𝑎 is the phase gradient induced by the external field, where Φ is the flux in139

the JJ. 𝜔 = 2𝜋Φ0𝑉dc is the angular Josephson frequency proportional to the dc voltage 𝑉dc. The140

last term, 𝜙, represents the oscillatory component induced by cavity modes and fluxons. This term141

generates the ac-voltage, which we aim to determine:142

𝑣(𝑥, 𝑡) = Φ0
2𝜋

𝜕𝜙

𝜕𝑡
. (14)143
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Small amplitude, multimode analysis144

In the small amplitude limit, 𝜙 ≪ 1, a perturbation approach can be used. A linear expansion of145

Eq. (3) yields [16,29,31],146

𝜕2𝜙

𝜕𝑥2 − 𝜕2𝜙

𝜕𝑡2
− 𝛼

𝜕𝜙

𝜕𝑡
= sin(𝑘𝑥 + 𝜔𝑡) + cos(𝑘𝑥 + 𝜔𝑡)𝜙 − Δ𝐽𝑏 . (15)147

Here Δ𝐽𝑏 = 𝐽𝑏 − 𝛼�̃� is the excess dc current with respect to the Ohmic QP line. It is caused by the148

second term in the r.h.s., which enables nonlinear rectification of the Josephson current. The excess149

dc current is defined as150

Δ𝐼 = 𝐼𝑐0 lim
𝑇→∞

1
𝑇

𝑇∫
0

𝑑𝑡
1
𝑎

𝑎∫
0

cos(𝑘𝑥 + 𝜔𝑡)𝜙𝑑𝑥. (16)151

The oscillatory part is described by the equation152

𝜕2𝜙

𝜕𝑥2 − 𝜕2𝜙

𝜕𝑡2
− 𝛼

𝜕𝜙

𝜕𝑡
= sin(𝑘𝑥 + 𝜔𝑡). (17)153

A comparison with Eq. (1) shows that this is the active TL equation, in which the supercurrent154

wave, sin(𝑘𝑥 + 𝜔𝑡), is acting as a distributed (𝑥, 𝑡)-dependent drive.155

To obtain 𝜙 a decomposition into cavity eigenmodes is made [15,16,29,31,41], similar to the TL156

analysis of patch antennas [34-36]:157

𝜙(𝑥, 𝑡) = −𝑖𝑒𝑖𝜔𝑡
∞∑︁
𝑛=1

𝑔𝑛 cos(𝑘𝑛𝑥). (18)158
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Substituting it in Eq. (17) and taking into account orthogonality of eigenfunctions, one obtains159

𝑔𝑛 =
𝐵𝑛 + 𝑖𝐶𝑛

�̃�2 − �̃�2
𝑛 − 𝑖𝛼�̃�

, (19)160

𝐵𝑛 =
sin(𝑘 − 𝑘𝑛)𝑎
(𝑘 − 𝑘𝑛)𝑎

+ sin(𝑘 + 𝑘𝑛)𝑎
(𝑘 + 𝑘𝑛)𝑎

, (20)161

𝐶𝑛 = −1 − cos(𝑘 − 𝑘𝑛)𝑎
(𝑘 − 𝑘𝑛)𝑎

+ 1 − cos(𝑘 + 𝑘𝑛)𝑎
(𝑘 + 𝑘𝑛)𝑎

. (21)162

From Eq. (14), voltage amplitudes at radiating slots are:163

𝑣(0) = Φ0𝜔

2𝜋
𝑒𝑖𝜔𝑡

∞∑︁
𝑛=1

𝑔𝑛, (22)164

𝑣(𝑎) = Φ0𝜔

2𝜋
𝑒𝑖𝜔𝑡

∞∑︁
𝑛=1

(−1)𝑛𝑔𝑛. (23)165

Excess current166

Without geometrical resonances the dc-current, well above the field-dependent critical current,167

𝐼 ≫ 𝐼𝑐 (𝐻), is determined by the QP resistance, 𝐼 = 𝑉/𝑅QP. In dimensionless units, 𝐼/𝐼𝑐0 = 𝛼𝑉/𝑉p,168

where 𝑉p = Φ0𝜔p/2𝜋 is voltage at plasma frequency. At resonances a partial rectification of the169

oscillating supercurrent occurs, leading to appearance of Fiske steps in the 𝐼-𝑉 curves. The excess170

dc-current, obtained from Eq. (16), is [16,29,31]171

Δ𝐼 =
𝐼𝑐0
4

∞∑︁
𝑛=1

[𝐵𝑛Im(𝑔𝑛) − 𝐶𝑛Re(𝑔𝑛)] (24)172

Figure 2 (a) shows calculated 𝐼-𝑉 characteristics of a JJ with 𝑎 = 5𝜆J, 𝛼 = 0.1 and at magnetic field173

corresponding to Φ = 5Φ0 in the JJ. Blue symbols represent direct numerical simulation of the174

sine-Gordon equation (3) for up and down current sweep. The red line shows the analytic solution,175

with the excess current given by Eq. (24). The agreement between exact (without linearization)176

numeric and (approximate) analytic solutions is quite good. It is seen that a series of Fiske steps177

appear in the 𝐼-𝑉 . Vertical grid lines mark positions of cavity mode resonances, 𝜔/𝑐0 = 𝑘𝑛. Fiske178

steps appear at this condition due to vanishing of �̃�2 − �̃�2
𝑛 term in the denominator of 𝑔𝑛, Eq. (19).179
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The main step occurs at the double resonance condition, 𝜔/𝑐0 = 𝑘𝑛 = 𝑘 . It happens at 𝑛 = 2Φ/Φ0180

and leads to vanishing of (𝑘−𝑘𝑛) in the denominators of Eqs. (20) and (21). The condition, 𝜔/𝑐0 =181

𝑘 , is referred to as the velocity matching because at this point the velocity of fluxon chain [or phase182

velocity of the current wave in Eq. (17)] reaches 𝑐0 [16].183
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Figure 2: (Color online). (a) Simulated current-voltage characteristics of a junction with 𝐿 = 5𝜆𝐽 ,
Φ/Φ0 = 5 and 𝛼 = 0.1. Blue symbols represent full numeric solution of the sine-Gordon equa-
tion (up and down current sweep). The red line represents the approximate (perturbative) analytic
solution, 𝐼 = 𝑉/𝑅QP + Δ𝐼. (b) Excess dc-current, Δ𝐼 (𝑉), at Fiske steps. Thick red line represents
the multimode analytic solution, Eq. (24). Thin blue, black and olive lines show single mode solu-
tions for 𝑛 = 9, 10 and 11. Vertical grid lines in (a) and (b) mark Fiske step voltages. Voltages are
normalized by (a) the plasma frequency voltage, 𝑉𝑝, and (b) the lowest Fiske step voltage, 𝑉1.

Single mode analysis184

Fig. 2 (b) shows the excess current, Δ𝐼/𝐼𝑐0 versus 𝑉 , normalized by the 𝑛 = 1 Fiske step voltage,185

𝑉1 = Φ0𝑐0/2𝑎. Such normalization clearly shows that the main resonance occurs at 𝑛 = 2Φ/Φ0 =186
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10. The thick red line represents the full multimode solution, Eq. (24). Thin blue, black and olive187

lines represent a single eigenmode contribution for 𝑛 = 9, 10 and 11. A perfect coincidence with188

the red line indicates that for underdamped JJs, 𝛼 ≪ 1, it is sufficient to consider just a single189

mode. This greatly simplifies the analysis.190

For a resonance at mode 𝑛,191

𝑔𝑛 (�̃� = �̃�𝑛) =
𝑖𝐵𝑛 − 𝐶𝑛

𝛼�̃�𝑛
, (25)192

and193

|𝑣𝑛 (0, 𝑎) | =
Φ0𝜔

2𝜋
|𝑔𝑛 | =

Φ0𝜔𝑝

2𝜋𝛼
𝐹𝑛, (26)194

Δ𝐼 =
𝐹2
𝑛

4𝛼�̃�𝑛
𝐼𝑐0, (27)195

where196

𝐹𝑛 =

√︃
𝐵2
𝑛 + 𝐶2

𝑛 . (28)197

Large amplitude case198

The described above perturbative approach is valid only for small amplitudes. Simulations in Fig.199

2 (a) are made for an underdamped JJ, 𝛼 = 0.1. In this case the quality factor of high-order cavity200

modes is large,201

𝑄𝑛 = 𝜔𝑛𝑅QP𝐶 =
�̃�𝑛

𝛼
≫ 1,202

and |𝑔𝑛 | is not small. Since 𝜙 appears within the sin 𝜂 term in Eq. (3), the maximum possible am-203

plitude of |𝑔𝑛 | is 𝜋. This reflects one of the key differences between FFO and patch antenna. The204

patch antenna is a linear element, in which the voltage amplitude is directly proportional to the feed205
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current. FFO is essentially nonlinear. The amplitude of Josephson phase oscillations will not grow206

beyond |𝑔𝑛 | = 𝜋. Instead higher harmonic generation will occur.207

Full numerical simulations of the sine-Gordon equation (3), shown by blue symbols in Fig. 2 (a),208

reveal that the amplitude of oscillations reach 𝜋 at the end of the velocity-matching step. This209

causes a premature switching out of the resonance before reaching the resonant frequency. It is210

somewhat miraculous that the agreement with the perturbative solution [red line in Fig. 2 (a)] is211

so good. Apparently, it works remarkably well, far beyond the range of its formal applicability,212

|𝑔𝑛 | ≪ 1.213

A general single mode solution for an arbitrary amplitude was obtained by Kulik [30]. The ampli-214

tude at the resonance, �̃� = �̃�𝑛, is given by the first solution of the implicit equation [31],215

𝐽0

(
|𝑔𝑛 |
2

)
=
𝛼�̃�𝑛

𝐹𝑛
|𝑔𝑛 |, (29)216

where 𝐽0 is the 0-order Bessel function. This equation can be easily solved numerically. It is also217

possible to obtain an approximate analytic solution by expanding 𝐽0(𝑥) ≃ 1 − 𝑥2/4 for small 𝑥.218

With such expansion, Eq. (29) is reduced to a quadratic equation with the solution,219

|𝑔𝑛 | =

√︄
16 +

(
8𝛼�̃�𝑛
𝐹𝑛

)2

− 8𝛼�̃�𝑛
𝐹𝑛

. (30)220

For overdamped JJs, 𝛼 ≫ 1 it reduces to the small amplitude result of Eq. (25), |𝑔𝑛 | = 𝐹𝑛/𝛼�̃�𝑛. For221

underdamped JJs, it qualitatively correctly predicts saturation of the amplitude for 𝛼 → 0, although222

at the value 4 instead of 𝜋. Thus, Eq. (30) provides a simple and good-enough approximation for a223

significantly broader range of damping parameters than Eq. (25).224

12



Input resistance225

For the practically most important velocity matching mode, 𝑘𝑛 = 𝑘 , from Eqs. (19,20,21) it fol-226

lows, 𝐵𝑛 = 1, 𝐶𝑛 = 0, 𝐹𝑛 = 1, leading to a remarkably simple result,227

|𝑣(0, 𝑎) | =
Φ0𝜔𝑝

2𝜋𝛼
= 𝐼𝑐0𝑅QP. (31)228

This equation has a straightforward meaning, illustrated by the equivalent circuit in Fig. 1 (c). A229

JJ is a source of spatially distributed oscillating current, 𝐽𝑧 = 𝐽𝑐0 sin(𝜔𝑡 + 𝑘𝑥), with a fixed ampli-230

tude, 𝐽𝑐0, but spatially dependent phase, 𝑘𝑥. It couples to the cavity mode via some effective input231

impedance 𝑍𝑖𝑛. 𝑍𝑖𝑛 depends on 𝜔, 𝑘𝑛 and 𝑘 and is in general complex. However, since the phase232

of the current wave is strongly varying along the junction, it is hard to define the phase shift be-233

tween current and voltage. Therefore, in what follows I will be talking about the input resistance,234

𝑅𝑖𝑛 = |𝑍𝑖𝑛 |, defined via the relation235

|𝑣(0, 𝑎) | = 𝐼𝑐0𝑅in. (32)236

From Eq. (26) it follows,237

𝑅in = 𝑅QP𝐹𝑛. (33)238

Figures 3 (a-c) show (a) 𝐵𝑛, (b) 𝐶𝑛 and (c) 𝑅in/𝑅QP = 𝐹𝑛 versus 𝑛 for the case from Fig. 2. Lines239

are obtained for continuous variation of 𝑛 in Eqs. (20,21) and circles represent the actual cavity240

modes with integer 𝑛. From Fig. 3 (c) it is seen that 𝑅in has a distinct maximum at the velocity241

matching condition 𝑛 = 2Φ/Φ0 = 10. At this point �̃� = �̃�𝑛 = �̃� the wave numbers of the cavity242

mode and the current wave coincide, leading to a perfect coupling along the whole length of the JJ.243

Therefore, 𝑅in = 𝑅QP and 𝑣 = 𝐼𝑐0𝑅QP. For other modes, 𝑘𝑛 ≠ 𝑘 , the coupling with Josephson cur-244

rent oscillations is much worse. As seen from Fig. 3 (c), it is oscillating with 𝑛. For the particular245
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Figure 3: (Color online). Panels (a) and (b) show mode-number dependence of coefficients 𝐵𝑛

and 𝐶𝑛, given by Eqs. (20) and (21), for the case from Fig. 2 with Φ/Φ0 = 5. Panel (c) shows
corresponding oscillatory dependence of the input resistance, Eqs. (28), (33). (d) Input resistance
for Φ/Φ0 = 5 (olive), 5.25 (blue) and 5.5 (red). The large 𝑅in enables good coupling of the cavity
mode to the Josephson current.

case with integer Φ/Φ0, 𝑅in vanishes for all even modes. This leads to the absence of correspond-246

ing Fiske steps in Fig. 2 (a).247

The coupling of a cavity mode to the current wave in the JJ depends on magnetic field and flux in248

the JJ (via parameter 𝑘). This is illustrated in Fig. 3 (d) for Φ/Φ0 = 5 [olive line, the same as in249

(c)], 5.25 (blue) and 5.5 (red). Although the oscillatory behavior of Fiske step amplitudes is well250

known [16,29,31], the interpretation of such behavior in terms of the input resistance makes a clear251

connection to the analysis of patch antennas, for which 𝑅in is one of the most important parame-252

ters. From this point of view, geometrical resonances with large voltage amplitudes appear only253
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for modes coupled to the current source (Josephson oscillations) via a large input resistance, Eq.254

(32). As seen from Fig. 3 (d), the best coupling with maximum, 𝑅in = 𝑅QP, occurs for the velocity-255

matching step, 𝑛 = 2Φ/Φ0. Modes with 𝑅in = 0 are not coupled to Josephson oscillations and,256

therefore, are not excited at all. In particular, there is no coupling to any mode in the absence of257

applied field, 𝑅in(𝐻 = 0) = 0. That is why Fiske steps do not appear at zero field.258

Inclusion of radiative losses in a cavity mode analysis259

Finally, in order to calculate radiative characteristics, we need to take into consideration radiative260

losses. In sec. B above only QP losses in a pure cavity eigenmode were considered. Yet, pure261

eigenmodes, 𝐸𝑛 ∝ cos(𝑘𝑛𝑥), 𝐻𝑛 ∝ sin(𝑘𝑛𝑥), do not emit any radiation because they do not pro-262

duce ac-magnetic fields at the edges 𝐻𝑛 (0, 𝐿) = 0 [36]. Consequently, the Pointing vector is zero.263

In other words, eigenmodes have infinite radiative impedance, 𝑍rad(0, 𝐿) = 𝐸 (0, 𝐿)/𝐻 (0, 𝐿) = ∞.264

Therefore, despite large electric fields, the radiated power 𝑃rad ∝ 𝐸2/𝑍rad is zero [10].265

Radiative losses can be included using the equivalent circuit, sketched in Fig. 1 (c). Voltage os-266

cillations at the JJ edges are produced by the oscillating supercurrent via the input resistance, Eq.267

(32). The generated electromagnetic power is distributed between internal losses, characterized268

by the dissipative resistance, 𝑅dis, and radiative losses to free space, characterised by the radiative269

resistance 𝑅rad. They are connected by the transmission line impedance,270

𝑍TL =

√︄
�̄�surf + 𝑖𝜔�̄�

�̄�QP + 𝑖𝜔�̄�
. (34)271

Here 𝑍surf is the surface impedance of electrodes, 𝐺QP = 1/𝑅QP is the quasiparticle conductance,272

𝐿 - inductance and 𝐶 - capacitance of the JJ. “Bars" indicates that the quantities are taken per unit273

length. For not very high frequencies and temperatures, the surface resistance of Nb electrodes is274

small (as will be discussed below). For tunnel JJs 𝐺QP is also small. In this case,275

𝑅TL ≃

√︄
�̄�

�̄�
= 𝑍0

√︄
Λ𝑑

𝜖r𝑏2 . (35)276
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It is very small because 𝑏 ≫ Λ ≫ 𝑑 and for all practical cases can be neglected. Therefore, in Fig.277

1 (c) we may consider that the dissipative and radiative resistances are connected in parallel. Anal-278

ysis of patch antennas [36] and numerical calculations for JJs with radiative boundary conditions279

[10] show that radiative losses can be simply included in the cavity mode analysis by introducing280

the total quality factor, 𝑄tot, of the cavity mode with parallel dissipative and radiative channels,281

1
𝑄tot

=
1

𝑄dis
+ 1
𝑄rad

. (36)282

Here 𝑄dis is associated with all possible dissipative losses, such as QP resistance in the JJ as well as283

surface resistance in electrodes and dielectric losses, 𝑄rad - with radiative losses,284

𝑄dis,rad = 𝜔𝐶𝑅dis,rad. (37)285

Using definitions of 𝛼 and 𝑄, we can introduce a total damping factor286

𝛼tot =
𝜔

𝜔p

1
𝑄tot

=
1

𝜔p𝐶𝑅tot
, (38)287

where the total resistance is288

𝑅tot =
𝑅dis𝑅rad

𝑅dis + 𝑅rad
. (39)289

Thus, to include radiative losses, 𝛼 and 𝑅𝑄𝑃 in the equations above should be replaced by 𝛼tot and290

𝑅tot. For the 𝑛-th cavity mode resonance we obtain,291

𝑃rad,𝑛 =
𝐼2
𝑐0𝑅

2
tot

2𝑅rad
𝐹2
𝑛 . (40)292

For the most important velocity matching resonance from Eq. (31) we obtain293

𝑃rad,𝑘 =
𝐼2
𝑐0𝑅

2
tot

2𝑅rad
, (41)294

16



with 𝑅rad and 𝑅tot defined in Eqs. (12) and (39).295

Power efficiency296

The total power, dissipated in a JJ, is given by the product of dc voltage and dc current,297

𝑃tot = 𝑉𝐼 =
Φ0𝜔

2𝜋

[
𝛼dis�̃� +

𝐹2
𝑛

4𝛼dis�̃�

]
𝐼𝑐0. (42)298

Here the left factor is the dc-voltage and the right is the total dc-current. It contains the QP current299

(first term) and the rectified excess current, Δ𝐼, (second term). The latter is written using Eq. (27)300

at the resonance condition �̃� = �̃�𝑛. It is important to note, that the nonlinear rectification occurs301

only inside the JJ. Therefore, the damping parameter 𝛼dis within the JJ is used for both terms. The302

first term in Eq. (42) describes dissipative dc-losses, which generate only heat, 𝑃heat = 𝑉2/2𝑅dis.303

The second term in Eq. (42) describes the total power consumed by the cavity mode, 𝑃cav = 𝑉Δ𝐼.304

Only this term is participating in radiation. From Eqs. (39,40) we obtain a well-known connection305

between the radiated power and the power consumed solely by the cavity mode,306

𝑃rad
𝑃cav

=
2𝑅dis𝑅rad

(𝑅dis + 𝑅rad)2 . (43)307

As usual, the maximum emission power is achieved at the matching condition 𝑅rad = 𝑅dis. In this308

case exactly one half of the cavity mode power is emitted and another half is dissipated. This is309

typical for antennas [36] and is consistent with direct simulations for JJs with radiative boundary310

conditions [10]. Yet, the overall power efficiency is reduced by the “leakage" QP current in Eq.311

(42), which just produces heat. For the 𝐼-𝑉 curves in Fig. 2 (a), the Ohmic QP current is more than312

twice Δ𝐼 at the velocity matching step. Therefore, the total power efficiency, 𝑃rad/𝑃tot, for such313

moderately underdamped JJ will not exceed 50/3 ≃ 17%. Since the leakage current decreases with314

increasing 𝑅QP, strongly underdamped JJs are necessary for reaching ∼ 50% power efficiency. This315

is the case for Nb tunnel JJs [9] and for high-quality intrinsic JJs in Bi-2212 high-𝑇𝑐 cuprates, for316
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which the quality factor may exceed several hundreds [32] and Δ𝐼 can be several times larger than317

the leakage QP current [9,32].318

Discussion319

Estimation of parameters320

Lets estimate characteristic impedances for the case of Nb/AlOx/Nb tunnel JJs, which are used in321

the state of the art FFOs [9,11]. I assume that 𝑎 = 100 𝜇m, 𝑏 = 10 𝜇m, 𝑑 = 2 nm, 𝜖𝑟 = 10,322

𝑑1 = 𝑑2 = 100 nm, the zero-temperature London penetration depth 𝜆𝐿0 = 100 nm, 𝐽𝑐0 = 5 · 103
323

(A/cm2), 𝐼𝑐0 = 𝐽𝑐0𝑎𝑏 = 50 mA, and the characteristic voltage 𝐼𝑐0𝑅𝑛 = 1 mV. This yields, 𝑅𝑛 = 20324

mΩ, 𝐶 = 44.25 pF, Λ = 272.6 nm, inductance 𝐿∗ = 𝜇0Λ𝑎/𝑏 = 3.43 pH, 𝑐0/𝑐 = 2.71 · 10−2.325

Surface resistance326

Within the two-fluid model, surface resistance of two superconducting electrodes can be written as327

[42]:328

𝑅surf ≃
𝑎

𝑏
𝜇2

0𝜔
2𝜆3

𝐿0𝜎𝑛

(𝑇/𝑇𝑐)4

(1 − (𝑇/𝑇𝑐)4)3/2 . (44)329

Here 𝜎𝑛 is the normal state conductivity. This approximation is valid for not very high tempera-330

tures, 𝑇/𝑇𝑐 < 0.8. Taking typical parameters for sputtered Nb films, 𝜎𝑛 ≃ 1.75 · 105 (Ωcm)−1 [43],331

frequency 𝑓 = 400 GHz and 𝑇/𝑇𝑐 = 0.5, we obtain: 𝑅surf ≃ 0.12 Ω.332

Transmission line impedance333

TL impedance is given by Eq. (34) where 𝐺QP = 1/𝑅QP. For tunnel JJs 𝑅QP ≫ 𝑅𝑛 at sub-gap334

voltages. I’ll assume 𝑅QP = 25𝑅𝑛, typical for Nb tunnel JJs [9,11]. This gives, 𝑅QP = 0.5 Ω and335

𝐺QP = 2 Ω−1. At 𝑓 = 400 GHz, 𝜔𝐿∗ = 8.61 Ω, 𝜔𝐶 = 111.2 Ω−1 and 𝑍TL ≃ 0.278 + 𝑖0.0015 Ω. It336

practically coincides with the resistance of ideal TL, Eq. (35). The value of 𝑍TL is only slightly af-337

fected by ill-defined QP resistance and remains practically the same even if we use the upper limit,338

𝐺QP = 1/𝑅𝑛. Importantly, 𝑍TL is small because of very small 𝑑.339

18



Dissipative resistance340

The effective dissipative resistance is affected by all sources of dissipation, including QP and di-341

electric losses in the junction barrier and surface resistance in electrodes. According to Eq. (37),342

𝑅dis is defined via the effective quality factor, 𝑄dis, which can be written as:343

1
𝑄dis

=
1

𝑄QP
+ 1
𝑄surf

+ 1
𝑄diel

, (45)344

where 𝑄QP, 𝑄surf and 𝑄diel are determined by QP, surface and dielectric losses, respectively. QP345

and surface resistance contribution can be accounted for using the TL analysis. The quality factor346

of TL is determined by the relation347

𝑄TL = 𝑘1/2𝑘2,348

where 𝑘1 and 𝑘2 are real and imaginary parts of the wave number in the TL, 𝑘 = 𝑘1 − 𝑖𝑘2. They are349

obtained from the TL dispersion relation,350

𝑘2 = −(𝑅surf + 𝑖𝜔𝐿∗) (𝐺QP + 𝑖𝜔𝐶).351

Taking into account that 𝐺QP = 1/𝑅QP ≪ 𝜔𝐶 and 𝑅𝑠 ≪ 𝜔𝐿∗, and 𝑄−1
TL = 𝑄−1

QP +𝑄−1
surf, we obtain352

𝑄QP = 𝜔𝑅QP𝐶 ≃ 55.6, (46)353

𝑄surf =
𝜔𝐿∗

𝑅surf
≃ 71.7 (47)354

Dielectric losses in AlOx barrier of a JJ were estimated in Ref. [44]. At 𝑓 ≃ 10 GHz, 𝑄diel ∼ 104.355

Although, it should reduce at 𝑓 = 400 GHz, we anticipate that it is still in the range of ∼ 103.356

Therefore, dielectric losses are negligible, compared to QP and surface loses. Assuming 𝑄diel =357

500 we obtain from Eqs. (45, 47, 47), 𝑄dis = 29.48 and 𝑅dis ≃ 0.265 Ω. It is close to the effective358
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dissipative resistance of the TL,359

𝑅dis ≃
𝑄TL
𝜔𝐶

=
𝑅QP

1 + 𝑅QP𝑅surf𝐶/𝐿∗ (48)360

Radiative and total resistances361

From Eqs. (12) and (8), taking into account the smallness of 𝑐0/𝑐, we can write,362

𝑅rad ≃ 3𝑍0
16𝜋

[
𝜆0
𝑏

]2
. (49)363

Substituting 𝜆0 = 750 𝜇m for 𝑓 = 400 GHz, we obtain a very large value, 𝑅rad ≃ 126.5 kΩ. Since364

𝑅rad ≫ 𝑅dis, the total resistance, Eq. (39), is 𝑅tot = 0.265 Ω ≃ 𝑅dis.365

Table 1: Estimation of characteristic resistances ( in Ohms) for a Nb/AlOx/Nb tunnel junction with
sizes 𝑎 = 100 𝜇m, 𝑏 = 10 𝜇m, 𝑑 = 2 nm, 𝑑1 = 𝑑2 = 100 nm, 𝐽𝑐0 = 5000 (A/cm2), at 𝑇/𝑇𝑐 = 0.5
and 𝑓 = 400 GHz.

𝑅𝑛 𝑅QP 𝑅surf 𝑅TL 𝜔𝐿∗ (𝜔𝐶)−1 𝑅dis 𝑅rad 𝑅tot

0.02 0.5 0.12 0.28 8.6 0.009 0.265 126.5k 0.265

Table 1 summarizes characteristic resistances.366

Radiation power367

From Eq. (41) we get the maximum radiation power at the velocity matching condition, 𝑃rad,𝑘 ≃368

0.7 nW. It is much smaller than the total dc power at the velocity matching step, ∼ Φ0 𝑓 𝐼𝑐0 ≃369

40 𝜇W. The corresponding power efficiency ∼ 10−5 reflects the key problem for using FFO as a370

free-space oscillator.371

Whom to blame?372

The very low radiation power efficiency of a JJ is colloquially attributed to “impedance mismatch-373

ing". However, so far there was no clear understanding of what is mismatching with what. A long-374
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living misconception is that the mismatch is between the TL and free space impedances, 𝑍TL ≪ 𝑍0375

[16]. However, this is not the source of poor performance. To the contrary, it is beneficial to have376

a small TL impedance, connecting two radiating slots in a patch antenna [36]. The small 𝑍TL does377

not affect antenna performance and can be neglected.378

The real source of the problem becomes apparent from Eq. (41). It is associated with more than379

five orders of magnitude mismatch between the total and radiative resistances, 𝑅tot ≪ 𝑅rad, see380

Table 1. There are two main reasons for the mismatch: (i) The smallness of the junction width with381

respect to the free-space wavelength. The factor [𝜆0/𝑏]2 in Eqs. (12) and (49) leads to a very large382

𝑅rad ≫ 𝑍0. (ii) The smallness of junction resistance, 𝑅QP ≪ 𝑍0. The huge mismatch indicates that383

a JJ alone does not work as a free-space oscillator.384

What to do?385

Accurate matching between radiative and junction resistances is necessary for efficient emission386

into free space. Therefore, 𝑅QP should be increased and 𝑅rad decreased to a fraction of 𝑍0. How-387

ever, this is not possible for the standard FFO geometry, as sketched in Fig. 1 (a). Indeed, increas-388

ing of 𝑅QP would require reduction of junction sizes, which would lead to even faster increase of389

𝑅rad. Alternatively, 𝑅QP can be increased by decreasing 𝐽𝑐0, but this will not reduce 𝑅rad. There-390

fore, the impedance matching requires modification of the oscillator geometry.391

There are many ways of coupling a Josephson oscillator to free space. First, I note that biasing392

electrodes that are attached to the junction, significantly affect the net impedance. Since the total393

length of the electrodes (few mm) is larger than 𝜆0, the electrodes will reduce the net impedance394

and thus improve impedance matching with free space [17]. Analysis of large JJ arrays demon-395

strated that long electrodes may act as a traveling wave antenna, facilitating power efficiency of396

several % at 𝑓 = 0.1 − 0.2 THz [45,46], which is much better than ∼ 10−5 estimated above for the397

bare junction without electrodes. In Ref. [11] a free-space oscillator based on an FFO, coupled to398

a double slot antenna, was demonstrated. Although the power efficiency was not specified, the de-399

tected of-chip signal up to 55 dB higher than the background noise was reported at 𝑓 = 0.5 THz. In400
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Ref. [27] a mesa structure, containing several hundreds of stacked Bi2Sr2CaCu2O8+𝛿 intrinsic JJs401

was implemented in a turnstile antenna. A radiation power efficiency up to 12% at 𝑓 ≃ 4 THz was402

reported. The record high efficiency was attributed to a good impedance matching with free space403

[17]. In Ref. [24] a Bi2Sr2CaCu2O8+𝛿 mesa was implemented into a patch antenna and the far-field404

emission at 𝑓 = 1.5 THz was reported.405

Common for all mentioned approaches is that junctions, which are small compared to 𝜆0 and, ac-406

cording to Eq. (49), have poor coupling to free-space, are coupled to large passive elements, com-407

parable with 𝜆0. These elements act as microwave antennas, enabling good impedance matching408

and enhancing power efficiency for emission in free space. The target parameters for such oscillator409

are: 𝑓 ∼ 1− 10 THz, the high power-efficiency ∼ 50% and high-enough of-cryostat power > 1 mW.410

Josephson Patch Oscillator411

Stacked junctions

Ground plane

Top electrode

Figure 4: (Color online). A proposed design of the impedance-matched free-space Josephson os-
cillator. Here a stack of Josephson junctions is acting as source for excitation of the patch antenna
formed by two large superconducting electrodes.

Since in this work I consider patch antennas, below I will dwell on the patch antenna approach, dis-412

cussed by Ono and co-workers [24]. Figure 4 shows a design of a Josephson patch oscillator (JPO).413

Here small junctions (red) are acting as an excitation source for a superconducting patch antenna.414

The bottom junction electrode (blue) forms the ground plane, and the top electrode (cyan) creates415

the patch antenna with sizes (𝑎, 𝑏), comparable to 𝜆0. In principle, the JPO can be diven by a sin-416

gle JJ. However, as follows from the estimation above (see Table 1), raising the junction resistance417

to the desired 𝑍0 level would require a drastic (100 times) reduction of the junction area. This will418

also lead to a proportional reduction of 𝐼𝑐0 and the net available power. Therefore, a better strategy419

is to use a stack of JJs with large-enough area, enabling high-enough 𝐼𝑐0. The number of JJs, 𝑁 , is420
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an additional controllable parameter, allowing fine-tuning of 𝑅n and 𝑅tot. Furthermore, in-phase421

synchronization of 𝑁 JJs would provide the 𝑁-fold increment of the oscillating voltage 𝑣(0, 𝐿),422

leading to a superradiant amplification of the emission power, 𝑃rad ∝ 𝑁2 [10].423

Moderate-size (∼ 10 𝜇m) Bi2Sr2CaCu2O8+𝛿 mesa structures are optimal for JPO. The 𝑅𝑛 of such424

mesas can be easily raised to several hundred Ohms, while maintaining 𝐼𝑐0 of few mA. This facili-425

tates the optimal net power level ∼ 𝐼2𝑅𝑛 of several mW [24,27]. It is small enough for obviation of426

catastrophic self-heating, which is one of the major limiting factors for superconducting devices427

[17,27]. Simultaneously it is large enough to enable > 1 mW emission, provided the radiation428

power efficiency is close to optimal ∼ 50%.429

The operation frequency should be aligned with the Josephson frequency at the characteristics430

voltage, 𝐼𝑐0𝑅n, of JJs. For operation at the primary TM𝑥
100 mode, one side of the patch should be431

𝑎 ≃ 𝜆/2, where 𝜆 = 𝜆0/
√
𝜖𝑟 is the wavelength inside the patch and 𝜖𝑟 is the relative dielectric432

permittivity of the insulation layer between patch electrodes. The other size, 𝑏, is adjustable and433

strongly affects the patch antenna performance. For 𝑏 ≪ 𝜆0 the radiative conductance per slot is434

given by Eq. (5). In the opposite limit, it becomes [36]435

𝐺1 =
𝜋

𝑍0

(
𝑏

𝜆0

)
. (𝑏 ≫ 𝜆0) (50)436

One of the most important parameters of the emitting antenna is the directivity, 𝐷, of the radiation437

pattern. A rectangular patch at the TM𝑥
100 mode has the main lobe directed perpendicular to the438

patch (in the 𝑧-axis direction) with [36]439

𝐷 = 6.6, (𝑏 ≪ 𝜆0)440

𝐷 = 8
(
𝑏

𝜆0

)
. (𝑏 ≫ 𝜆0)441

A good free-space emitter should have as large 𝐷 as possible. From this point of view, it is prefer-442

able to have fairly wide antennas 𝑏 ∼ 𝜆0.443

Finally, the position (𝑥, 𝑦) of the stack plays an important role in selection of the excited cavity444
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mode. To excite solely the TM𝑥
100 mode the stack should be placed at 𝑥 close to one of the radiating445

slots, i.e., 𝑥 ∼ 𝑎 and 𝑦 = 𝑏/2. The position 𝑥 of the stack affects the effective input resistance of446

the antenna and provides another adjustable parameter for patch antenna operation. The FFO in-447

put resistance, Eq. (33), is not relevant for JPO because it describes coupling to an internal cavity448

mode within the JJ. In JPO Josephson current is coupled to an external cavity mode in the patch.449

Since the patch is much larger than the JJ, the feed-in of the JPO is not distributed (in contrast to450

FFO). Consequently, there is no need for magnetic field. The best coupling occurs at 𝐻 = 0, corre-451

sponding to the homogeneous distribution of the Josephson current. Generally, operation of JPO is452

described by the standard patch antenna theory [36]. The only interesting physics is associated with453

synchronization of JJs in the stack [10], which can be forced by the high quality cavity mode in the454

antenna [47].455

Conclusions456

In conclusion, I described a distributed, active patch antenna model of a Josephson oscillator. It ex-457

pands the standard transmisson line model of a patch antenna, taking into account spatial-temporal458

distribution of the input Josephson current density in a Josephson junction. In the presence of mag-459

netic field and fluxons, the distribution of the oscillatory component of current is nonuniform. This460

nonuniformity is essential for operation of a Josephson flux-flow oscillator and determines the ef-461

fective input resistance, which enables the coupling between the Josephson current and the cavity462

modes in the junction. The presented model allows explicit application of many patch antenna re-463

sults and facilitates full characterization of the device, including the emission power, directivity464

and power efficiency. The model explains the low power efficiency for emission in free space. It465

is primarily caused by the smallness of the junction width compared to the free-space wavelength,466

and the corresponding mismatch between very large radiative and small junction resistances. The467

model clarifies what parameters can be changed to improve FFO characteristics. Finally, I dis-468

cussed the design of a Josephson patch oscillator, which can reach high power for emission in free469

space with the optimal power efficiency, ∼ 50%.470
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Appendix471

Table 2: Definition of variables (in SI units).

Variable Definition Properties
𝑎, 𝑏 Junction length and width in (𝑥, 𝑦) plane 𝑎 ≫ 𝜆𝐽 , 𝑏 ∼ 𝜆𝐽
𝛼 Quasiparticle damping factor 𝛼 = 1/𝜔p𝑅QP𝐶 = 1/𝑄QP(𝜔p)
𝐶 Junction capacitance 𝐶 = 𝜖0𝜖𝑟𝑎𝑏/𝑑
𝑐0 Swihart velocity 𝑐0 = 𝑐

√︁
𝑑/𝜖𝑟Λ = 𝑎/

√
𝐿∗𝐶

𝑑, 𝑑1,2 Thicknesses of JJ interlayer and the two electrodes 𝑑 ≪ 𝑏 ≪ 𝑎

Φ Flux in the junction Φ = 𝐻𝑦Λ
∗𝑎

Φ0 Flux quantum Φ0 = ℎ/2𝑒
𝐽𝑐0, 𝐼𝑐0 Maximum critical current density and critical current 𝐼𝑐0 = 𝐽𝑐0𝑎𝑏

𝑘 Field-induced phase gradient 𝑘 = 2𝜋Φ/Φ0𝑎
𝑘𝑛 Wave number of a cavity mode 𝑘𝑛 = (𝜋/𝑎)𝑛

𝐿∗, 𝐿□ Inductance of JJ and inductance per square 𝐿∗ = 𝜇0Λ𝑎/𝑏, 𝐿□ = 𝜇0Λ
𝜆L1,2 London penetration depths of the two JJ electrodes -
𝜆0 Wavelength in free space -
𝜆 Wavelength in the patch antenna 𝜆 = 𝜆0/

√
𝜖𝑟

𝜆J Josephson penertation depth 𝜆J = [Φ0/2𝜋𝜇0𝐽𝑐0Λ]1/2 = 𝑐0/𝜔p
Λ Characteristic length associated with JJ inductance Λ = 𝑑 + 𝜆𝐿1 coth(𝑑1/𝜆𝐿1) + 𝜆𝐿2 coth(𝑑2/𝜆𝐿2)
Λ∗ Effective magnetic thickness of the JJ Λ∗ = 𝑑 + 𝜆𝐿1 tanh(𝑑1/2𝜆𝐿1) + 𝜆𝐿2 tanh(𝑑2/2𝜆𝐿2)
𝜂 Josephson phase difference -
𝜔p Josephson plasma frequency 𝜔p = [2𝜋𝐼𝑐0/Φ0𝐶]1/2

𝜔J Angular Josephson frequency 𝜔J = 𝜕𝜂/𝜕𝑡 = 2𝜋𝑉dc/Φ0
𝜔𝑛 Cavity mode angular frequency 𝜔𝑛 = 𝑐0𝑘𝑛

𝑅QP, (𝑟QP) Subgap quasiparticle resistance, (per unit area) 𝑟QP = 𝑅QP𝑎𝑏
𝑅dis The net dissipative resistance -
𝑅surf Surface resistance of electrodes -
𝑅n Normal state resistance of the JJ -
𝑅TL Transmission line resistance -
𝑅rad Radiative resistance -
𝑅in Effective input resistance of the JJ -
𝑅tot The total load resistance of the JJ -
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