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Abstract

The hardware implementation of signal microprocessors based on superconducting technologies
seems relevant for a number of niche tasks where performance and energy efficiency are critically
important. In this paper, we consider the basic elements for superconducting neural networks
on radial basis functions (RBF). We examine the static and dynamic activation functions of the
proposed neuron. Special attention is paid to tuning of the activation functions to the Gaussian form
with relatively large amplitude. We proposed and investigated heterostructures designed for the
implementation of tunable inductors which consist of superconducting, ferromagnetic, and normal

layers.
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Introduction

For modern telecommunications, probabilistic identification of various sources in a broadband group
signal is extremely important. Also, the probabilistic analysis is used in the consideration of stochastic
processes [1-4], as a popular machine learning method for spatial interpolation of non-stationary and
non-Gaussian data [5], as a central part of compensation block to enhance the tracking performance
in control systems for a class of nonlinear and non-Gaussian stochastic dynamic processes [6].

An important example for this work is the cognitive radio, which is able to receive information
about the features of the "radio-environment" and adjust its operating parameters based on this data [7-
13]. Similar problems arise nowadays when reading data in superconducting noisy intermediate-scale
quantum (NISQ) computers [14-17]. Here again, we need real-time identification and classification
of varying signals from multiple sources (qubits) in a narrow frequency range. When working with
large data, it’s necessary to create specialized neural networks at the hardware level to effectively
solve such problems.

Josephson digital circuits and analog receivers have been used for a long time to create software-
defined radio-systems [18-25] as well as read-out circuits for quantum computing [26-33]. They
realize a unique combination of a wide dynamic range and high sensitivity when receiving signals,
with high-performance and energy efficiency at the stage of the processing. It seems reasonable to
implement additional processing of incoming data inside the cryo-system using the capabilities of
neural network computing [34-43]. The creation of extremely low-dissipating element base for such
systems is a very actual scientific and technical task that requires theoretical and experimental studies
of the features of macroscopic quantum interference in the complex Josephson circuits.

The direct use of the previously proposed superconducting adiabatic neural network (ANN) based

on the perceptron [44-48] for probabilistic identification is not possible. In particular, during the
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formation of the output signal in the ANN, the so-called global approximation of the input signal
is implemented [11,12], in which almost all neurons are included in signal processing. In addition,
the perceptron is a fully connected network, which means an abundance of synaptic connections
between neurons. These circumstances supposes a highly resource-intensive learning of the network
for signal analysis. There is an alternative approach with a representation of the input set of data
into the set of output values by using only one hidden layer of neurons. Each of these neurons is
responsible for its own area of the parameter space of incoming data. This is the probabilistic or
Bayesian approach, where radial-basis functions (for example, Gaussian-like functions) are used as
neuron activation functions.

The most common networks operating on this principle are radial basis function networks (RBFN)
(also known as Bayesian networks). When using such a network, objects are classified on the basis
of assessments of their proximity to neighboring samples. For each sample, a decision can be made
based on the selection of the most likely class from those to which the sample could belong. Such a
solution requires an estimate of the probability density function for each class. This score is obtained
by consideration of training data. The formal rule is that the class with the tightest distribution in the
scope of the unknown instance will take precedence over other classes. The traditional approach for
estimating the probability density for each class is to assume that the density has some definite form.
The normal distribution is the most preferred since it allows one to estimate such parameters of the
model as the mean and standard deviation analytically. The superconducting implementation of the

key elements of the discussed neural networks is the focus of this work.

Results and Discussion

Model of tunable Gauss-neuron: numerical simulations

A usual architecture of the considered RBFN [49] is presented in figure 1a. These networks have
only one hidden layer of neurons on which components of the input vector x are fed. Every neuron

of the hidden layer calculates the values of the 1D function Ay (x).
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where x; is a k' reference point, o — scattering parameter for one-dimensional function 7y (¥).

In this paper, we propose a modified tunable neuron circuit [44] for RBFN (see figure 1b), with a
Gaussian-like activation function. It consists of two identical Josephson junctions JJ; and JJ; in the
shoulders with input inductances, L, and output inductunce L,,;. It is also used to set an additional
bias magnetic flux, @;. Flux biasing is used to provide a suitable transfer function for asynchronous
circulation of currents in the connected circuits. We will further call such a cell a Gauss-neuron or a

G-cell/neuron.

input
(a) vector x

input (b) Input

()"{u} 17 1071
_ h_,-a{cienz_A G_\WW JJ, 1; » JJ,
() O,
Output L
Py

Figure 1: (a) Schematic illustration of a RBF-network. (b) Schematic representation of a Gauss-
neuron ensured Gauss-like transfer function.

Hereinafter we use normalized values for typical parameters of the circuit: all fluxes (input
®;, and output ®,,,, bias ®,) are normalized to the flux quantum ®; currents are normalized to
the critical current of the Josephson junctions /¢; inductances are normalized to the characteristic
inductance 27w LIc /Dy, times are normalised to the characteristic time tc = ®y/(27aVe) (Ve is a
characteristic voltage of a Josephson junction). Equations of motion were obtained in terms of

half-sum and half-difference of Josephson phases ¢1, ¢2 (6 = (¢1 + ¢2)/2 and ¥ = (@1 — ¢2)/2):
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The output magnetic flux obeys the following equation:

2 put
[+ 20,

(0= ¢p) . (4)

Pout =

Figure 2(a,b) below shows the families of transfer functions of a Gauss-neuron at different bias
fluxes. They are compared with the radial-basis function taken in the form g(x) = exp(—x?/(20?))
(dashed line). All transfer functions were normalized to normalized to their maximum value, since
at the first stage we were interested in the shape of the curve itself. It can be seen that the shape
of the response meets the requirements; in addition, it can be adjusted using a bias magnetic flux
¢p. An important feature of the system is that it also allows non-volatile tuning with memory using
tunable inductances / and /,,,, see figure 2(c-e). Estimations for different values of ¢; show that the
best match (with Gauss-like radial-basis function) can be achieved with ¢;, = 0.057 and inductance
values [ = 0.1, I,,; = 0.1. Also the investigation of the full width at half maximum (FWHM) and
the amplitude of the transfer functions of the Gauss-neuron was carried out for different values of
@p (figure 2(c-d)) and inductance [ (figure 2(e)). It can be seen that an increase in the value of the
inductance / decreases FWHM of the transfer function and increases its amplitude. The bias flux is a
convenient adjustment of transfer function of the tunable Gauss-neuron; bias flux should vary in the
[0...0.5] 7 range to save the proper form of the transfer function. The mean of the transfer function
can be controlled by an additional constant component in the input flux. By selecting the parameters
of a configurable G-neuron, we can make the effective field period for the activation function large
enough for practical use in the real neural networks (figure 2(e)).

We calculated the standard deviation (SD) of the transfer function from the Gaussian-like function

g (x) with fixed amplitude. The obtained results are presented in the {/, /,,,;} plane. This visualization
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Figure 2: Transfer functions (normalised) and its main characteristics for the Gauss-neuron. (a),
(b) Families of the normalised transfer functions depending on the magnitude of the bias flux ¢,

for various pairs of inductances / and [,,;: (a)l = 0.1, 1,,, = 0.1;(b) = 0.9, 1,,, = 0.1. (c)
Dependencies of full width at half maximum (FWHM) and amplitude on the bias flux ¢, of transfer
functions for / = 0.1,0.5,0.9 with /,,, = 0.1. d) Dependencies of FWHM and amplitude on the
inductance [ for transfer functions of the Gauss-neuron at /,,,;, = 0.1 and ¢, = 0.05 - 7.

allows to find the most proper operating parameters for the considered element. The magnitude of
the amplitude of the transfer function was also presented (Figures 3(a,b)). The optimal values of
inductance corresponding to the minimum of SD lies in the hollow of the surface, see figure 3(b).
The minimum SD value is reached at [ = 0.1, [,,; = 0.1. The position of the hollow in figure 3(b)
could be expressed as (l,,:)sp ~ 0.8 —0.55 - (I)sp. At the same time, for relatively small ¢;, the
transfer function amplitude increases with increase of the output and shoulder inductunces, /,,; and
[. Thus, the choice between the proximity of the transfer function to a Gaussian-like form and the

maximization of the response amplitude is determined by the specifics of the network when solving

a specific problem. Once again, we emphasize: variations in the parameters of the circuit within



123 a fairly wide range allows one to change the amplitude and width of the activation function, while

12+ maintaining its Gaussian-like shape.

Standard Deviation

Figure 3: Amplitude of the transfer function (a) and its standard deviation from the Gaussian-like
function (b) depending on the inductances / and /,,; of the G-cell. Bias flux is equal to 0.057x.

The dynamic transfer functions of the system were also calculated (figure 4(a)). The input

125

126 magnetic signal is a smoothed trapezoidal function of time with rise/fall time 7z, see the insert in the

127 figure 4(b). It can be seen that the dynamic activation function of the required type without hysteresis

can be obtained with adiabatic operation of the cell (tgr up to 80007, where #¢ is the characteristic

128

120 time for the Josephson junction).

Realization of tunability: adjustable kinetic inductance

130

131 For neural networks based on the considered G-neurons, tunable linear elements (inductors) with

122 memory properties are extremely important. This allows the in situ switching between operating

133 modes directly on the chip. The tunable passive devices are usually based on thin superconducting

13« strips, which demonstrate non-linear properties of kinetic inductance at a large current comparable

135 to the critical one [50,51]. Perspective types of controllable devices consist on the hybrid structures



136

137

138

139

140

141

142

143

144

145

146

147

148

0.07 100

( ) 80001, 1, =01 b
a 1=01
0.06 0, = 0.05-7] ( )
é 0.05} 10
5 004f
= 1L
5- 0.03
s .. R
© ot oil . <
0.1 . . 9= 0.01w
Input flux, ¢, Rise/Fall time, #,,
0.00 ; : i 0.01 ! . .
0.00 1.57 3.14 4.71 6.28 10 100 1000 10000

Figure 4: (a) Dynamic transfer function of a Gauss-neuron for a trapezoidal external signal for dif-
ferent values of the rise / fall times of the signal ¢gr and (b) Energy dissipation, normalised to the
characteristic energy Eg = Dol /2n, by rise-fall time of the input signal for different bias fluxes:
¢p = {0.01,0.05,0.1} - . Insert demonstrates the form of temporal dynamic for input flux and dis-
sipation. If the critical current for Josephson junctions /¢ is equal to 100uA and ¢, = 0.057 than
E4is = 0.01 aJ for tgr = 6 ns (corresponds to = 1700-¢¢).

with semiconductors tunable by gate-voltage [52] or include magnetic layers with different possible
magnetic states [53] .

A relatively simple way to create the required passive element with non-volatile memory is a
tunable kinetic inductance [46] with integrated spin-valve structure. The typical spin-valve [54-56]
is a hybrid structure containing at least a pair of ferromagnetic F'M-layers with different coercive
forces. Variations in the relative orientation of their magnetizations change the distribution of the
order parameter, that leads to a noticeable change in the kinetic inductance of the layers. The usage
of a thin superconducting spacer (s) between FM layers supports superconducting order parameter
and increase efficiency of spin-valve effect [57]. In this article, we propose a development of this
approach, allowing to significantly increase the effective variations in the kinetic inductance.

We study proximity effect and electronic transport in the multi-layer hybrid structures in the frame
of Usadel equations [58]

d*F _d*G,

G—-F
dx? dx?

nTcé? ~oF = -GA, G2 +F,F*, =1; (5)
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with Kupriyanov-Lukichev boundary conditions [59]

dF;, F;d r
( 1 F Gl)=Fr—FzG— 7

at the S/FM interfaces. Here G and F' are normal and anomalous Green’s functions, w = 77 (2n + 1)
is Matsubara frequency. w = w + iH, where H is the exchange energy (H=0 in S and N layers), I/r
— indexes, which denotes the materials from the left and right side from interface, £ — the coherence
length, p — resistivity, yp = % — interface parameter, where RpA — the resistance per square of the
interface.

The calculated distribution of the anomalous Green function, F, permits to estimate the ability to
influence the propagation of the superconducting correlations (screening properties) for the hybrid

structure. The spatial distribution of the screening length directly depends on the proximization of

the superconducting order parameter in the system [60]:

_,_ 16nT?
7= =2 (). ®)

Hence, the screening length and kinetic inductance of the considered s-layers are significantly larger
for the parallel orientation of the magnetizations in F'M - layers (parallel case) in comparison with the
anti-parallel case. It leads to redistribution of the current flowing along the multilayer and increase
the total kinetic inductance of the structure [61,62]

d -1

Lx = % / A(x)2dx 9)
0

where X is the length of the strip, W — width, and d is the thickness of the multilayer. It can

be concluded that small changes in temperature or applied magnetic field [46,63] can significantly
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change (from zero to relatively large values) the kinetic inductance of thin s-layers in the hybrid
structures under consideration. In our calculations, we assume that the currents flowing through the
system are weak and do not have the effect of coupling, and the structure itself is much thinner than
the screening length of the magnetic flux.

We propose a hybrid structure effectively consisting of three parts: a pairing source, a spin valve,
and a low inductive current carrier. The pairing source is a superconductor layer slightly thicker than
the critical value at which the self-consistency potential appears. This condition usually corresponds
to thicknesses of the order of (2...3) &. The spin valve is a multilayer structure (FM); —s— (FM), —
s—(FM)|—s— (FM), with several ferromagnetic layers (FM); and (F M), of different thicknesses,
separated by thin spacers of a superconductor or normal metal. Remagnetization of the structure by
fields of different amplitudes changes the relative orientations of the magnetizations between (F M)
and (F M), layers, which leads to a change of the effective exchange field of the multilayer. This
effect can change the efficiency of the Cooper pairs penetration through the multilayer in several
times. The current carrier is organized on the basis of a thin strip of low-resistance normal metal,
which ensures its lower kinetic inductance relative to the rest of the structure, which leads to the flow

of current precisely through this layer.
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Figure 5: Spatial distribution of the pair amplitude in the hybrid structure a) S — (FM); — s —
(FM),—s—(FM),—s—(FM);— N without additional sl-layer and b) S— (FM)|—s—(FM),—s—
(FM), —s—(FM), —s; — N with additional superconducting layer for parallel (blue solid line) and
anti-parallel (red dashed line) mutual orientations of magnetization between F' M| and F M, layers.
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Figure 5 shows the spatial distributions of the pairing amplitude over a similar structure for
parallel and anti-parallel orientations of the magnetization of the F'M;- and F'M,-layers. To enhance
the effect, this element can contain an additional superconductor layer s; with a thickness less than
the critical thickness. In the case of a closed valve, such a structure is in the normal state, and the
superconducting correlations in the N-layer are negligible. If the valve is open, the s layer goes over
into a superconducting state leading to increase of the amplitude of pair correlations in the N-layer.
The spatial distribution of the pairing amplitude in a structure with an additional layer s; with similar

parameters is shown in the figure 5(b).

0.06
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Figure 6: Kinetic inductance of the hybrid structures S — (FM), —s — (FM), —s — (FM) — s —
(FM), —s—Nand S — (FM); —n—- (FM), —n— (FM); —n— (FM); — 51 — N for parallel
(dark blue solid line and long-dashed green line) and antiparallel (red dashed line and orange dash-
dot line) mutual orientations of magnetization between F M| and F' M, layers as functions of spacer
thickness.

Figure 6 demonstrates the dependence of the kinetic inductance on the thickness of the inter-
mediate s— or n-layers, which determine the efficiency of the spin valve. At large thicknesses of
intermediate layers, the valve loses efficiency. In the case of normal spacers, the transition occurs
to a completely normal state, where the kinetic inductance of the entire structure coincides with the
kinetic inductance of the source layer S. With a large thickness of superconducting spacers s, the

valve system also loses efficiency, transferring the entire structure to a completely superconducting

11
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state. However, at thicknesses of the order of (0.5...1) &, the maximum spin-valve effect appears, and
the total kinetic inductance of the structure changes several times during the switch between states

with parallel and antiparallel magnetization orientations.

Conclusion

We have considered a basic cell for superconducting signal neuro-computers designed for fast pro-
cessing of a group signal with extremely low energy dissipation. It turned out that for this purpose it
is possible to modify the previously discussed element of adiabatic superconducting neural networks.
The ability to adjust the parameters of the studied Gauss-cell (with Gaussian-like activation function)
is very important for in situ switching between operating modes. Using microscopic modeling, we
have shown that the desired compact tunable passive element can be implemented in the form of a
controllable kinetic inductance. An example is a multilayer structure consisting of a superconducting
"source", a current-carrying layer and a spin valve with at least two magnetic layers with different
thicknesses. The proposed tunable inductance does not require suppression of superconductivity
in the source layer. In this case, the spin-gate effect determines the efficiency of penetration of
superconducting correlations into the current-carrying layer, which is the reason for the change in
inductance.
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