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Abstract10

We investigate plasma oscillations in long electromagnetically coupled superconducting nanowires.11

We demonstrate that in the presence of inter-wire coupling plasma modes in each of the wires get12

split into two "new" modes propagating with different velocities across the system. These plasma13

modes form an effective dissipative quantum environment interacting with electrons inside both14

wires and causing a number of significant implications for low temperature behavior of the systems15

under consideration.16
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Introduction19

Physical properties of ultra-thin superconducting nanowires differ strongly from those of bulk su-20

perconductors owing to a prominent role of fluctuation effects in a reduced dimension [1-3]. Such21

fluctuations cause reduction of the superconducting critical temperature [4] and yield a negative22
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correction to the mean field value of the order parameter Δ0. In particular, at 𝑇 → 0 for the abso-23

lute value of the order parameter |Δ| in superconducting nanowires one finds [5]24

|Δ| = Δ0 − 𝛿Δ0,
𝛿Δ0
Δ0

∼
𝑅𝜉

𝑅𝑞

(1)25

where 𝑅𝜉 is the normal state resistance of the wire segment of length equal to the superconducting26

coherence length 𝜉 and 𝑅𝑞 = 2𝜋/𝑒2 ' 25.8 KΩ is the quantum resistance unit. For generic metallic27

nanowires one typically has 𝑅𝜉 � 𝑅𝑞 implying that fluctuation correction to the mean value of the28

superconducting order parameter (1) remains weak and in the majority of cases can be neglected.29

Is the condition 𝑅𝜉/𝑅𝑞 � 1 sufficient to disregard fluctuation effects in superconducting30

nanowires? The answer to this question is obviously negative since even in this limit fluctuations of31

the phase 𝜑(𝑥, 𝑡) of the order parameter Δ = |Δ| exp(𝑖𝜑) survive being essentially decoupled from32

those of the absolute value |Δ|. Such phase fluctuations are intimately related to sound-like plasma33

modes [6,7] (the so-called Mooij-Schön modes) which can propagate along the wire playing the34

role of an effective quantum dissipative environment for electrons inside the wire. The frequency35

spectrum of this effective environment is similar to that of the celebrated Caldeira-Leggett model36

[8] which is widely employed in order to account for both quantum dissipation and quantum deco-37

herence in normal [9,10] and superconducting [11,12] metallic structures, see also the book [1] for38

an extensive review on this issue.39

The presence of Mooij-Schön plasma modes is an important feature inherent to long superconduct-40

ing nanowires which leads to a number of interesting effects. One of them is theoretically predicted41

[13,14] and experimentally observed [15,16] smearing of the square-root singularity in the density42

of states (DOS) near the superconducting gap accompanied by a non-vanishing tail in DOS at sub-43

gap energies. Mooij-Schön plasmons also mediate interaction between quantum phase slips (QPS)44

[1,2,17,18] causing Berezinskii-Kosterlitz-Thouless-like [17] and Schmid-like [19-21] quantum45

phase transitions in structures involving superconducting nanowires.46

In this work we are going to investigate propagation of plasma modes in a system of two long ca-47

pacitively coupled superconducting nanowires. We are going to demonstrate that in the presence48
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of electromagnetic interaction between the wires their plasma modes get split into a pair of "new"49

modes propagating along the system with two different velocities. This effect may have various50

implications for the low temperature behavior of the structures under consideration.51

Results and Discussion52

Consider the system composed of two long parallel to each other superconducting nanowires. This53

structure is schematically depicted in Fig. 1. The wires are characterized by kinetic inductances54

L1 and L2 (times unit wire length) and geometric capacitances 𝐶1 and 𝐶2 (per unit length). In the55

absence of any interaction between the wires they represent two independent transmission lines56

where low energy plasma excitations propagate with velocities 𝑣1 = 1/
√
L1𝐶1 and 𝑣2 = 1/

√
L2𝐶257

respectively in the first and the second wires.58

Figure 1: The system of two capacitively coupled superconducting nanowires.

Note that the wires can be treated as independent only provided they are located far from each59
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other. If, on the contrary, the distance between the wires becomes sufficiently short they develop60

electromagnetic coupling even though there exists no direct electric contact between them. In this61

case each fluctuation associated with an electromagnetic pulse in the first wire induces an electro-62

magnetic perturbation in the second one and vice versa. Accordingly, propagation of plasma modes63

along the wires gets modified and is not anymore described by two independent velocities 𝑣1 and64

𝑣2. The task at hand is to investigate the effect of electromagnetic coupling on plasma excitations in65

the system of two superconducting nanowires.66

To this end, we will routinely model electromagnetic coupling between the wires by introducing67

mutual geometric inductance L𝑚 and capacitance 𝐶𝑚 for these wires. All geometric inductances68

for ultrathin superconducting wires are typically much smaller than kinetic ones and, hence, L𝑚69

can be safely neglected as compared to L1,2. On the contrary, mutual capacitance 𝐶𝑚 can easily70

reach values comparable with 𝐶1,2 and for this reason it needs to be explicitly accounted for within71

the framework of our consideration.72

As a result, making use of the microscopic effective action analysis [17,18,22] we arrive at the fol-73

lowing Hamiltonian which includes both electric and magnetic energies of our superconducting74

nanowires [23,24]75

�̂�𝐸𝑀 =
1
2

∑︁
𝑖, 𝑗=1,2

∫
𝑑𝑥(L−1

𝑖 𝑗 Φ̂𝑖 (𝑥)Φ̂ 𝑗 (𝑥) + (1/Φ20)𝐶
−1
𝑖 𝑗 (∇ �̂�𝑖 (𝑥)∇ �̂� 𝑗 (𝑥)), (2)76

where 𝑥 denotes the coordinate along the nanowires,77

Ľ =


L1 0

0 L2

 , �̌� =


𝐶1 𝐶𝑚

𝐶𝑚 𝐶2

 (3)78

are the inductance and capacitance matrices and Φ0 = 𝜋/𝑒 is the superconducting flux quantum79

(here and below we set Planck constant ℏ, speed of light 𝑐 and Boltzmann constant 𝑘𝐵 equal to80

unity).81

The Hamiltonian (2) is expressed in terms of the dual operators �̂�(𝑥) and Φ̂(𝑥) [25] obeying the82
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canonical commutation relation83

[Φ̂(𝑥), �̂�(𝑥′)] = −𝑖Φ0𝛿(𝑥 − 𝑥′) (4)84

and are linked to the charge density and the phase operators �̂�(𝑥) and �̂�(𝑥) as85

�̂�(𝑥) = 1
Φ0

∇ �̂�(𝑥), �̂� = 2𝑒
𝑥∫
0

𝑑𝑥′Φ̂(𝑥′). (5)86

Physically, Φ̂𝑖 (𝑥) represents the magnetic flux operator, while the operator �̂�𝑖 (𝑥) is proportional87

to that for the total charge 𝑞𝑖 (𝑥) that has passed through the point 𝑥 of the 𝑖-th wire up to the some88

time moment 𝑡, i.e. 𝑞𝑖 (𝑥) = −�̂�𝑖 (𝑥)/Φ0.89

As we already pointed out above, in the case of two capacitively coupled wires any perturbation90

that occurs in one of the wires generates charge redistribution and voltage pulses in both wires. The91

corresponding voltage drop in these wires �̂�1,2 can be expressed in terms of the local charge opera-92

tors by means of the following equation [23]93

�̂�𝑖 (𝑡) =
1
Φ0

∑︁
𝑗=1,2

𝐶−1
𝑖 𝑗 (∇ �̂� 𝑗 (𝑥1, 𝑡) − ∇ �̂� 𝑗 (𝑥2, 𝑡)), 𝑖, 𝑗 = 1, 2. (6)94

In what follows it will be convenient for us to go over to the phase representation and to express the95

equation of motion for the phase perturbations 𝜑1,2 in both wires in the form96

(
1̌𝜕2𝑡 − V̌2𝜕2𝑥

) 
𝜑1(𝑥, 𝑡)

𝜑2(𝑥, 𝑡)

 = 0 (7)97

that follows directly from the Hamiltonian (2) for our structure. Here V̌ = (�̌�Ľ)−1/2 is the velocity98

matrix which accounts for plasma modes propagating along the wires.99

In order to evaluate the velocities of plasma modes in the presence of electromagnetic coupling100

between the wires it is necessary to diagonalize the velocity matrix V̌ and to determine its eigen-101
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values 𝑣±. Making use of Eq. (3) after a trivial algebra we obtain102

𝑣± =
1
2𝜅


√︃
𝑣21 + 𝑣22 + 2𝑣1𝑣2𝜅 ±

√︂
(𝑣21 − 𝑣22)2 +

4𝐶2𝑚𝑣21𝑣
2
2

𝐶1𝐶2√︃
𝑣21 + 𝑣22 + 2𝑣1𝑣2𝜅


, (8)103

where we defined 𝜅 =
√︁
1 − 𝐶2𝑚/(𝐶1𝐶2).104

Equation (8) represents the central result of our present work. It demonstrates that in the presence105

of electromagnetic coupling plasma modes in each of the wires are split into two "new" modes be-106

ing common for both wires and propagating along them with velocities 𝑣±. As we expected, no in-107

dependent plasma modes in each of the wires could exist in this case. Only in the absence of inter-108

wire interaction (i.e. for 𝜅 = 1) Eq. (8) yields 𝑣+ = 𝑣1 and 𝑣− = 𝑣2.109

In the case of identical wires with 𝐶1 = 𝐶2 = 𝐶, L1 = L2 = L and 𝑣1 = 𝑣2 = 𝑣 the result (8)110

reduces to a particularly simple form111

𝑣± = 1/
√︁
L(𝐶 ∓ 𝐶𝑚) ≡ 𝑣/

√︁
1 ∓ 𝐶𝑚/𝐶. (9)112

Provided the parameters of both wires differ in such a way that one of the unperturbed velocities113

strongly exceeds the other one, 𝑣1 � 𝑣2, Eq. (8) yields114

𝑣+ ' 𝑣1/𝜅, 𝑣− ' 𝑣2. (10)115

Equations (8)-(10) demonstrate that one of the plasma modes may propagate much faster than any116

of such modes in the absence of inter-wire interaction. This situation can be realized the provided117

the wires are located close enough to each other in which case the cross-capacitance 𝐶𝑚 may be-118

come of the same order as 𝐶1,2 implying 𝜅 � 1.119

Provided the wires are thick enough the low energy Hamiltonian in Eq. (2) is sufficient. However,120

for thinner wires one should also take care of the effect of quantum phase slips [1,2,17,18] which121

correspond to fluctuation-induced local temporal suppression of the superconducting order param-122
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eter inside the wire accompanied by the phase slippage process and quantum fluctuations of the123

voltage in the form of pulses. Here it will be sufficient for our purposes to account for QPS effects124

only in the first wire and ignore these effects in the second one. In this case the Hamiltonian (2)125

should be replaced by that for an effective sine-Gordon model [25]126

�̂� = �̂�𝐸𝑀 − 𝛾1

∫
𝑑𝑥 cos( �̂�1(𝑥)), (11)127

where the last term describes QPS effects in the first wire and 𝛾1 defines the QPS amplitude (per128

unit wire length) in this wire. In simple terms, the last term in Eq. (11) can be treated as a linear129

combination of creation (𝑒𝑖𝜒1) and annihilation (𝑒−𝑖𝜒1) operators for the flux quantum Φ0 and ac-130

counts for tunneling of such flux quanta Φ0 across the first wire.131

It is well known that any QPS event causes redistribution of charges inside the wire and generates132

a pair of voltage pulses propagating simultaneously in the opposite directions along the wire. As-133

sume that a QPS event occurs at the initial time moment 𝑡 = 0 at the point 𝑥 = 0 inside the first134

wire. This event corresponds to the phase jump by 2𝜋, as it is shown in Fig. 2. Provided the first135

wire is electromagnetically decoupled from the second one, at 𝑡 > 0 voltage pulses originating136

from this QPS event will propagate with the velocity 𝑣1 = 1/
√
L1𝐶1 along the first wire, see Fig. 2.137

Obviously, the second wire remains unaffected.138

Let us now "turn on" capacitive coupling between the wires. In this case quantum phase slips in139

one of the wires generate voltage pulses already in both wires. Resolving Eq. (7) together with140

proper initial conditions corresponding to a QPS event, we arrive at the following picture, summa-141

rized in Figs. 3 and 4. In the first wire each of the two voltage pulses propagating in the opposite142

directions is now in turn split into two pulses of the same sign moving with different velocities 𝑣+143

and 𝑣−, as it is illustrated in Fig. 3. Voltage pulses generated in the second wire by a QPS event144

in the first one have a different form. There also exist two pairs of pulses propagating in the oppo-145

site directions with velocities 𝑣+ and 𝑣− along the second wire, however the signs of voltage pulses146

moving in the same direction are now opposite to each other, cf. Fig. 4. This result clearly illus-147

trates specific features of voltage fluctuations induced in the second wire by a QPS event in the first148
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Figure 2: Time-dependent phase configurations describing a QPS event at 𝑡 = 0 (red) and 𝑡 > 0
(blue) together with propagating voltage pulses generated by this QPS event in a single supercon-
ducting nanowire.

wire: Such fluctuations are characterized by zero average voltage and non-vanishing voltage noise149

[24].150

Conclusion151

In this work we have investigated plasma oscillations in capacitively coupled superconducting152

nanowires. We have shown that in such structures there exist two plasma modes propagating with153

different velocities along the wires. We have explicitly evaluated these velocities and demonstrated154

that these plasma modes are unique for both wires forming a single effective dissipative quantum155
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Figure 3: The same as in Fig. 18 in the first of the two capacitively coupled superconducting
nanowires. Each of the voltage pulses is split into two propagating with different velocities 𝑣±.

environment interacting with electrons inside the structure. Our results might have significant im-156

plications for low temperature behavior of coupled superconducting nanowires. For instance, elec-157

tron DOS in each of the wires can be affected by fluctuations in a somewhat different manner as158

compared to the noninteracting case [13-16]. Likewise, the logarithmic interaction between dif-159

ferent quantum phase slips mediated by such plasma modes gets modified implying a shift of the160

superconductor-insulator quantum phase transition in a way to increase the tendency towards lo-161

calization of Cooper pairs [23]. Further interesting effects are expected which can be related to the162

correlated behavior of quantum phase slips in different superconducting nanowires. This problem,163

however, goes beyond the frames of the present paper and will be studied elsewhere.164
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Figure 4: Time-dependent phase configurations at 𝑡 = 0 (red) and 𝑡 > 0 (blue) together with prop-
agating voltage pulses in the second of the two capacitively coupled superconducting nanowires
generated by a QPS event in the first one.
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