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Abstract 

The magnetohydrodynamics (MHD) stagnation point Casson nanofluid flow towards 

stretching surface with velocity slip and convective boundary condition has been 

investigated in this article. Effects of thermal radiation, viscous dissipation, heat source 

and chemical reaction have also been incorporated. Using appropriate similarity 

transformation Partial Differential Equations (PDEs) are converted into Ordinary 

Differential Equations (ODEs) and shooting technique along with Adams–Moulton 

method of order four has been used to obtain the numerical results. Different physical 

parameters effects on velocity, temperature and concentration of nanofluid flow have 

been presented graphically and discussed in detail. Numerical values of the skin friction 

coefficient, Nusselt number and Sherwood number are also and discussed. 

 

Key words: Casson Nanofluid, MHD, Thermal radiation, Chemical reaction, Viscous 

dissipation. 

 

1.   Introduction 

 

Fluid is a phase of matter that deforms or flows under an applied external force. Fluid 

exists in the form of liquids, gases or plasma [1]. It is a substance with vanishing shear 

modulus or, in more simple words, substance which cannot resist any applied shear force. 

Fluid is the basic need of everyday life and because of its importance in many natural 

processes, scientists in different part of world are trying to explore various facts regarding 

the flow of fluid. Fluid dynamics is the sub-branch of fluid mechanics in which we study 

the fluid flow, also by analyzing the cause of flow. And how forces influence the fluid 

flow. It provides methods for understanding the evolutions of stars, ocean, current, 

tectonics plate, as well as the blood circulation [2]. Few important applications of fluid 

flows include wind turbines, oil pipelines, rocket engine and air-conditioning systems [3]. 

Archimedes was the first mathematician who formulated the Archimedes principle about 

the static of fluid and is considered to be the basics of fluid mechanics. The proper study 

of fluid mechanics start from early fifteen centuries. Fluid can be further classified into 

Newtonian or non-Newtonian fluid, depending on the relationship between two physical 

quantities i.e., stress and strain. 
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The mixture of nanoparticles with dimension less than 100nm and the conventional low 

thermal conductivity fluid is known as nanofluid. The word nanofluid was first 

introduced by Choi [4] that presented a new class of fluid. The thermal conductivity of 

nanofluid can be increased by using nanoparticle of gold, copper, silver etc., into the base 

fluid. The factor that lead to an increase in the thermal conductivity of nanofluids was 

studied by Buongiorno [5]. He observed that, both thermophoresis effect and the 

Brownian motion causes a change in thermal conductivity of the fluid. Naramgari and 

Soluchana [6] analyzed the effect of thermal radiation on MHD nanofluid over a 

stretching surface. Abolbashari et al. [7] investigated the transfer of energy and heat in 

the steady laminar Casson nanofluid flow using both slip velocity and surface boundary 

condition. Ghadikolaei et al. [8] investigated the influence of different physical 

parameters such as chemical reaction, thermal radiation, suction, Joule heating, heat 

generation and absorption in the MHD flow of Casson nanofluid using a porous non-

linear sheet. 

Magnetohydrodynamics is that branch of mechanics which we deals with the study of 

conduction fluid flow in the presence of an external magnetic field. It has wide range of 

applications in various fields of science such as, metallurgical science, mental working 

process, aerodynamics, fluid dynamics, and many others engineering disciplines for 

example, ceramic and biomedical engineering etc. [9]. The 2D mixed convection MHD 

boundary layer stagnation point flow in the existence of thermal radiation using a vertical 

plate which was filled with nanofluid has been demonstrated by Eftekhari and Moradi 

[10]. Kumar et al. [11] analyzed the impact of the transfer of heat in MHD Casson 

nanofluid using nonlinear surface. Aman et al. [12] investigated the flow of 2D 

incompressible viscous fluid using a shrinking surface in the existence of an external 

magnetic field. 

Stagnation point always exist on the flow field surface such that close to this point the 

fluid come to at rest. There for, the Stagnation point can be defined as, the point in the 

flow field where the fluid velocity become zero. The study of the flow of nanofluid close 

to the stagnation point has many practical applications, some of them are listed as, 

cooling of electronic devices by fan, solar receiver, the cooling of nuclear reactor at the 

time of emergency shutdown, and several hydrodynamic processes [13]. Due to these 

important applications of stagnation point flow has attracted a great attention of scientific 

community. Hiemenz [14] was the first mathematician who first time proposed the 2D 

stagnation point flow. Eckert [15] got the accurate solution by extending Hiemenz 

problem by adding the energy equation. Mahapatra and Gupta [16], In view of that Ishak 

et al. [17], and Hayat et al. [18] investigated the impact of the transfer of heat on 

stagnation point over a porous plate. 

Non-Newtonian fluid has wide range of application such as oil recovery, filtration, 

polymer engineering, ceramics production and petroleum production. There is exists a 

sub-class of non-Newtonian fluids called Casson fluid. This fluid has large viscosity 

which tends to infinity at zero rate of shear i.e., if the magnitude of shear stress is much 

weaker than the magnitude of applied stress it behaves like a solid. On the other hand, if 

shear stress become greater than the yield stress the fluid start flowing. Casson [19] first 

time developed the Casson model for various suspension of cylindrical particles. Soup, 

fruit juice, jelly, honey and tomatoes sauce are general example of Casson fluid. Benazir 

et al. [20] have analyzed the unsteady MHD Casson fluid flow over a at plate and vertical 
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cone over porous medium along with double dispersion effects. The laminar convective 

boundary layer non-Newtonian Casson fluid flow thermally fixed over a stretching sheet 

have been analyzed by Animasaun et al. [21] Afikuzzaman et al. [22] have investigated 

the unsteady flow of MHD fluid with hall current through parallel plates and considering 

the magnetic field perpendicular to the plates. The heat transfer with MHD Casson fluid 

flow towards a linear stretching sheet with temperature distribution over the sheet has 

been analyzed by Govardhan et al. [23]. In this article, we provide a detail review of 

Ibrahim et al. [24] study and the study is extended by considering various other effects 

such as Soret effect, Dufour effect and inclined magnetic field.  

 

2.   Problem Formulation 
 

We have considered a 2D steady incompressible MHD stagnation point flow of a Casson 

nanofluid over a stretching sheet. The sheet is placed in the plane 0y  , such that       

y  axis is normal to the sheet. The flow of nanofluid is constrained to the surface 0y  , 

the origin is kept fixed while the sheet is stretching with velocity   n

wu u x ax   with 

0n   and 
nu bx   is the free stream velocity where a  and b  are two positive constants. 

The slip velocity at the surface is taken as 
2

y

slip

c

p u
U B

y




  
  
   

. Where c  is the 

critical value of this product based on the non-Newtonian model, B  is the plastic 

dynamic viscosity and yp  is the yield stress. The magnetic field  
1

2
0

n

B x B x



  is applied 

normal to the sheet where 0B  is a constant. It is also assumed that the magnetic Reynolds 

number is small, and the induced magnetic field is negligible. A convective heating 

process is used to regulate the sheet temperature fT . The nanoparticles concentration is 

wC  which is assumed to be constant. For y  goes to infinity, the concentration and 

temperature of nanofluid is represented by C  and T  respectively. 

 
Figure 1: Flow model geometry. 
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The boundary layer equations in the light of above assumptions are 

Continuity equation  

Physical principal: Mass is conserved 

0,
u v

x y

 
 

 
                 (1) 

Momentum equation    

Physical principle: F = ma 

 

 
2 2

2

1
1 ,

f

Uu u u B
u v U U u

x y xy




 


 

   
      

   
                                 (2) 

Energy equation  

Physical principle: Energy is conserved 

     

 

 

22

0

2

2

1 1 1
1

,

r

p f f

p T

B

f

Q qT T T u
u v

x y C y c T T c yy

c DC T T
D

c y y T y




  









       
          

          


     
    

       

        (3) 

Mass transfer equation  

 
2 2

02 2
,T

B

DC C C T
u v D k C C

x y Ty y




      
       

      
           (4) 

The corresponding boundary conditions are: 

, ,
2

0,

,

, 0, , .

yn

w slip w

c

f f w

n

P u
u U U ax v v

y
at y

T
k h T T C C

y

u U bx v T T C C as y






  

  
      

     
 

           


      

          (5) 

In the above equations,   stands for kinematic viscosity, f  for fluid density,  

represent thermal diffusivity, pC  represents specific heat at constant pressure, 0k  denotes 

chemical reaction coefficient and  
f

c  represents heat capacity, BD  represents Brownian 

diffusion coefficient, 0Q  shows volumetric heat generation, TD  thermophoresis diffusion 

coefficient, U  represents free stream velocity n  indicates nonlinear stretching parameter, 

  shows the electrical conductivity,   represents the Casson fluid parameter, sheet 
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temperature can be represented by wT  and T  represents nanofluid temperature 

respectively. C  is nanoparticles concentration, pC  shows the free stream concentration 

and fh  denotes the coefficient of heat transfer. 

3.   Similarity Transformation 

 

The following transformation [24] has been used to get ODEs from PDEs 

 
 

   

 
 

 
 

   

1

' '2

1 1

2 2

1 1
, ,

2 1

1 2
, , ,

2 1

.

n

n

n n

f w

a n n
u a x f v x f f

n

a n a
y x x y x f

n

T T C C

T T C C


   


  



   



 

 

 

  
    

  


 
  

 
 
 

  


          (6) 

The following assumptions are made for the calculation of velocity components along x  

and y  direction as 

,u v
y x

  
  
 

.                (7) 

The non-dimensional form of the Eqs. (2), (3) and (4) are: 

    
2

''' " ' 2 '21
1 0,

1

n
f ff f A M A f

n

 
       

 
                                   (8) 

    
2 2

" ' ' ' ' "4 1
1 Pr Pr 1 Pr Pr 0,

3

R
f Nb Nt Ec f Q     



  
           

   
        

(9) 

" ' " 0.
Nt

Le f Le
Nb

                               (10) 

The corresponding boundary condition becomes 

   

      

     

' "

'

'

1
( ) 0, 1 1 ,

0,

1 , 1 ,

, 0, 0, .

f f f
at

Bi

f A as

   
 

     

     

 
     

   
     


    

                                

(11) 

In the above Eqs. (8)-(11) R represents the radiation parameter, Pr  stands for Prandtl 

number, Bi  the Biot number, Ec  for Eckert number, Nb  represents Brownian motion 

parameter, Nt  the thermophoresis parameter, Q  represents the heat generation, Le  

stands for the Lewis number, A  denotes velocity ratio number and S  is the suction 

parameter, these parameter are formulated as: 
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 

   

 

   

   
 

 

2 * 3
0

*

2
0

1

2

2 4
, , , , ,

1

2
, , ,

1

2 1
r , ,.

1

wp

f f

T fpw

f w p f f

f

n

c D C CB Tb
A M Nb R Le

a a n c Dk k

c D T TxQ U
Q Ec Nt

a n U c TC T T

h
P Bi

k a n
x

  

  



  





  










    

 



 
   

  



  
 



            (12) 

 

4.   Physical Quantities of Interest 

 

Mathematical form of skin coefficient friction is 

w
fx 2

w

C ,
U




           (13) 

Mathematical form of Nusselt number is 

 
w

x

f

xq
Nu ,

k T T




         (14) 

And the Sherwood number is 

 
m

x

w

xq
Sh ,

D C C 




                   (15) 

In the above equations wq  represents the heat flux, w the shear stress, and mq  denotes the 

mass flux which are defined as  
* 3

w w m*
y 0 y 0y 0

16 T1 u T C
1 , q k , q D .

y y y3k



 




 

           
                           

     (16) 

We obtained the following dimensionless form for Nusselt number Sherwood number 

and skin friction coefficient: 

 0.5 "2 1
Re 1 0 ,

1
x fC f

n 

 
  

  
  0.5 '2 4
Re 1 0 ,

1 3
x xNu R

n
  

   
  

 

 0.5 '1
Re 0 .

2
x x

n
Sh  

   

The Reynolds number can be defined as Re w

x

U x


 . 

5.   Solution Methodology 

 

The system of nonlinear ODEs (8)-(10) along with boundary condition (10) are converted 

into first order ODEs. The first order system of ODEs with appropriate boundary 

condition are solved by using shooting method. We adopt the following procedure: 
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    
2

" ' 2 '

'''

2

1 ,
1

1

n
ff f A M A f

nf



    


 
 

 

                                             (17) 

   
2 2

' ' ' ' "

"

1
Pr 1

,
4

1
3

f Nb Nt Ec f Q

R

    




  
       

  


 
 

 

                              (18) 

" ' " .
Nt

Le f Le
Nb

                               (19) 

 

Since Eq. (17) is a function of f  and its derivatives, which can be solved individually by 

shooting method. The solution of Eq. (17) can be used in Eq. (18) and Eq. (19) as a 

recognize input. We have notice two initial conditions given at 0  in the above third 

order ODE, Eq. (17) give the unknown condition  " 0f which is represented by P . We 

have introduced the following symbols for further simplification. 
' "

' "

1 2 3 4 5 6, , , , , .
f f f

f y f y f y y y y
P P P

  
     

  
 

The above system of ODEs and the corresponding initial condition can be written as 

 

 

     

 

 

   

5

6

'

1 2 1

'

2 3 2

1 2 2

3 2 1 3 2 3

'

4 4

1

5 5

'

6 1 6 4 3 2 5 5 6

, 0 ,

1
, 0 1 1 ,

21
, 0 ,

11
1

, 0 0,

1
, 0 1 ,

21
2 , 0 1.

11
1

y y y S

y y y P

n
y y A y y M A y y P

n

y y y

y y y

n
y y y y y y y My y

n











 


  
     

  
 

               


  


       


            
 
  

         (20) 

For the solution of above initial value problem, we use Adams Moulton Method of order 

four. For finding the initial condition we take  0
P P . For calculating the root, we used 

Newton method which is given by the following iteration 

   

  
  

21

5

,
* .

,

n

n n

n

y P A
P P

y P









 
  
 
 

            (21) 
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The approximate solution of Eq. (17) can be obtained by converting the unbounded 

domain  0, into bounded domain  max0, , where max  is chosen such that no 

considerable changes are obtained going beyond. The execution of the Newton's method 

can be presented in the following algorithmic form: 

Step-1: Choose an initial guess 0r r  in the equation (8) and solve it by the Adams-    

              Moulton method. 

Step-2: If for a very small positive number  , 

             2 ,kh r A
 



  for 0,1,2,..........k   

             then go to Step-3, otherwise the solution is there. 

Step-3: Compute the next value of the missing initial condition 1kr  ; 0,1, 2,..........k   

             by using the Newton's scheme given by (21). 

Step-4: Repeat Step-1 with 1.kr r   

 

In order to apply numerical method for the solution of Eqs. (18) and Eq. (19), we denote 

the missing initial condition  0 and  0  by q  and r , respectively and different 

notations have been used which are given below 
' '

' '

1 2 3 4 5 6 7 8

' '

9 10 11 12

, , , , , , , ,

, , ,

Z Z Z Z Z Z Z Z
q q q q

Z Z Z Z
r r r r

   
   

   

   
       

   
   

   
   

 

Using these notations, we get a system of first order ODEs which are given below  

 

 '

1 2 1, 0 ,Z Z Z q    

   ' 2 2

2 1 2 2 4 3 2 1 2

Pr 1
1 , 0 1 ,

4
1

3

Z y Z Nb Z Z Ecy Nt Z Q Z Z Bi q

R


  
          
     
 

 '

3 4 3, 0 1,Z Z Z 

 
 

' 2 2

4 1 4 1 2 2 4 3 2 1

3 4

3 Pr 1
1

3 4

, 0 ,

Nt
Z Le y Z y Z Nb Z Z Ecy Nt Z Q Z

Nb R

Le Z Z r




  
         

   
 

 '

5 6 5, 0 1,Z Z Z 

   '

6 1 6 6 4 2 8 2 6 5 6

Pr
2 , 0 ,

4
1

3

Z y Z Nb Z Z Z Z Nt Z Z Q Z Z Bi

R


       
 
 

 

 '

7 8 7, 0 0,Z Z Z 

 
 

 

'

8 1 8 1 6 6 4 2 8 2 6 5

7 8

3 Pr
2

3 4

, 0 0,

Nt
Z Le y Z y Z Nb Z Z Z Z Nt Z Z Q Z

Nb R

Le Z Z

        

 
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 '

9 10 9, 0 0,Z Z Z 

   '

10 1 10 10 4 2 12 2 10 9 10

Pr
2 , 0 0,

4
1

3

Z y Z Nb Z Z Z Z Nt Z Z Q Z Z

R


       
 
 

 

 '

11 12 11, 0 0,Z Z Z 

 
 

 

'

12 1 12 1 10 10 4 2 12 2 10 9

11 12

3 Pr
2

3 4

, 0 1.

Nt
Z Le y Z y Z Nb Z Z Z Z Nt Z Z Q Z

Nb R

Le Z Z

        

 

 

In order to solve the above initial value problem, we used Adams Moulton method and 

the missing conditions are chosen such that 

     1 3, 0, , 0.Z q r Z q r
     

   

The above set of equations can be solved by using Newtons method with following 

iterative formula: 

 

 

 

 

   

        

1

1 1

1

1
1

, ,3 3

, ,

, , n n

n n

n n
q r

Z q r Z q r

q r Zq q
Zr r Z q r Z q r

q r









  
 

                    
 

   

 

 

 

 

 
    

1
1

5 9 1
1

, ,7 11
n n

n n

n n
q r

Z Z Zq q
Zr r Z Z 






                     
     (22) 

The following steps are involved for the accomplishment of the shooting method.  

(i) Choice of the guesses 0q q  and 0r r . 

(ii) Choice of a positive small number  . 

          If     1 3max 0 , 0 ,Z Z      stop the process otherwise go to (iii). 

(iii) Compute 1kq  and 1kr  ; 0,1,2,3,4..........k  by using (22). 

(iv) Repeat (i) and (ii). In a similar manner, the ODEs (9-10) along with the 

associated BCs can be solved by considering f as a known function.    

The stopping criteria for the shooting method is set as:     1 3max , ,Z Z     

where  is a small positive number. From now onward  has been taken as 810  whereas 

  is set as 7. 

6.   Results and Discussion 

The numerical results of the equations in the previous sections are discussed in this 

section by using the graphs and tables. The numerical computations are done for the 

influence of different important parameters such as, thermal radiation R , nonlinear 

parameter n , Casson fluid parameter  , thermophoresis parameter Nt , magnetic 

parameter M , velocity parameter, skin friction coefficient, Brownian parameter, 

Sherwood and Nusselt number. These physical parameters have a direct effect on 

concentration, temperature and velocity distribution.  
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Skin-Friction Coefficient, Nusselt Number and Sherwood Numbers  

Table 1 and 2 describes the computed numerical results of Nusselt’s number, Sherwood 

number and skin friction coefficient using different physical parameters given in the 

table. The skin friction coefficient is  "1
1 0 ,f



 
  
 

the Nusselt number is 

 '4
1 0 ,

3
R 

 
  
 

 and the Sherwood number is  ' 0 . The values of skin friction 

coefficient, Nusselt number and Sherwood number changes by changing the physical 

parameters. As given in the table, the skin friction coefficient gradually depressed by 

taking large values of slip parameter, Brownian parameter, chemical reaction parameter, 

thermophoresis parameter and Biot number, however for thermal radiation and Ekert 

number no change has been observed in the skin friction coefficient. The table clearly 

shows gradual decrease in Nusselt and Sherwood number by enhancing the numerical 

values of various physical parameters. 

Table 1: Computed numerical data of skin friction coefficient, for  
0.5, 1.0, 1.0, 0.2, 2.0.M S A n      

  R  Nb  Nt  Ec  Q  Bi     "1
1 f 0



 
  
 

 Present 

0.1 0.1 0.2 0.2 0.1 0.1 0.5 0.2 1.61508 1.615085 

0.5        0.86635 0.8663513 

1.0        0.55611 0.5561473 

Table 2: Computed numerical data of Nusselt and Sherwood number for  
0.5, 1.0, 1.0, 0.2, 2.0.M S A n      

  R  Nb  Nt  Ec  Q  Bi     '4
1 R 0

3


 
  
 

 Present  ' 0  Present 

0.1 0.1 0.2 0.2 0.1 0.1 0.5 0.2 0.31881 0.31851990 0.78212 0.78184500 

0.5        0.31584 0.31572310 0.73225 0.73172220 

1.0        0.29743 0.31209230 0.69361 0.71006290 

 0.5       0.47534 0.40664310 0.85635 0.82238190 

 0.7       0.54226 0.44421670 0.86696 0.83734510 

  0.5      0.52735 0.49954630 0.91883 0.89945870 

  0.1      0.30714 0.32305150 0.75428 0.57684580 

   0.3     0.49898 0.31734510 0.93392 0.68620830 

   0.5     0.31618 0.31492500 0.75528 0.49861680 

    0.5    0.37008 0.26913770 0.82365 0.83793130 

    1.0    0.47926 0.20716610 0.94256 0.90818040 

     -0.2   0.51145 0.34502760 0.92416 0.75364970 

     0.0   0.35468 0.32873450 0.83659 0.77109130 

      0.1  0.15916 0.09567917 0.94445 0.92249670 

      2.0  0.52619 0.56139440 0.82931 0.62964730 

       0.0 0.52985 0.31901520 0.72444 0.66415260 

       0.5 0.52180 0.31798700 0.96569 0.92964540 
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Effect of Casson Parameter   

Figure 2 analyzes the impact of   on dimensional velocity profile. The velocity of the 

fluid decreases by increasing the numerical value of  . Physically, this means that fluid 

viscosity increases due to accelerating values of   which in turn decelerate the 

nanofluid velocity profile. Furthermore, the present phenomena convert to Newtonian 

fluid as   approaches to infinity. Figure 3 illustrates the relationship between energy 

profile and  . It is seen that the temperature distribution of the fluid increases by 

gradually increasing the value of  . Actually, by increasing value of   the thermal 

boundary thickness increase due to which the surface temperature increases. Figure 4 

demonstrates the behavior of   on the concentration field. The nanoparticle volume 

fraction is observed to be increased for the higher estimation of  . 

Effect of Magnetic Number M  

Figure 5 shows the relationship between M  on dimensionless velocity profile  'f  , 

we see that the velocity profile of the fluid depressed continuously by accelerating the 

value of magnetic field. Generally, the increasing value of M  creates the Lorentz force 

and the collision between the conducting molecules increase in the presence of this force 

due to which the temperature of the fluid increases and the velocity decreases at the 

boundary layer. Figure 6 illustrates the dependence of energy profile on magnetic 

parameter M . From the graph, we see that gradually enhancement of M  causes an 

increase in the temperature. Physically, the greater magnetic number induces an opposing 

force normally known as the Lorentz force which significantly increase both boundary 

layer thickness and temperature profile of the nanofluid. Figure 7 analyzes the behavior 

of concentration distribution for ascending values of M . The graph shows that the fluid 

concentration distribution is enhanced with mounting values of M . 

Effect of Eckert Number Ec  

Figure 8 illustrates the impact of Ec  on temperature profile of the fluid. The graph clearly 

shows that the temperature distribution is enhanced by mounting values of Ec . Actually, 

Ec  can be written as a ratio of kinetic energy of the fluid particle and thermal energy. The 

increasing value of Ec  means, we have increased the kinetic energy of the fluid particle, 

as a result the thermal boundary layer thickness is enhanced.   

Effect of Thermophoresis Parameter Nt  

Figure 9 investigates the dependence of temperature distribution on Nt . The plot shows 

that the temperature profile of the fluid is escalating with boosting values of Nt . 

Actually, reason of this behavior is that the nanoparticle at the hot boundary side have 

been moved towards the cold boundary side and the thermal boundary layer become 

thicker in the existence of Nt . Figure 10 depicts the visualization of Nt  on the 

concentration distribution. It is noticed that by gradually increasing Nt  the concentration 

distribution also increases. Generally, in the presence of Nt  exert forces on each other, as 

a result particle move from hotter to colder region of the fluid and has been noticed an 

increment in the concentration distribution. 
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Effect of Biot Number Bi  

Figures 11 and 12 are drawn to analyze the impact of Bi  on both energy and 

concentration distribution of the fluid respectively. Physically, Bi can be written as a ratio 

of convection to conduction. The convection is taking place on the surface while the 

conduction is taking place inside the surface. Thus, the boosting value of Bi  accelerates 

both temperature and concentration profile. 

Effect of Velocity Slip Parameter   

Figure 13 shows the relationship between slip parameter and dimensionless velocity 

distribution. The velocity is observed to be a reducing function of  . It can be 

generalized as the fractional resistance between fluid particles and the flow surface 

increases as a result the velocity profile of the fluid decreases. Figure 14 shows that the 

energy profile is accelerated by gradually uprising the value of  .  

Effect of Radiation Parameter R   

Figure 15 analyzes the impact of R  on energy distribution. The gradually rising value of 

R  enhances the energy distribution of the fluid. Actually, the heat energy exhausted 

from the fluid due to large value of R  and as a result the energy distribution increased. 

Effect of Prandtl Number Pr  

Figure 16 explores the impact of Pr  on energy distribution. Since, the Pr  can be written 

as a ratio of kinematic diffusivity to heat diffusivity. The gradually increasing value of 

Pr  increase the fluid density and decreasing thermal diffusivity and as a result the energy 

distribution is enhanced. 

Effect of Heat Generation/Absorption Coefficient Q  

Figure 17 illustrates the relationship between Q  and temperature profile of the fluid. The 

plot clearly shows a reduction in temperature distribution of the fluid for negative value 

of Q . In the same way heat generation occurs for the positive value of Q . Due to these 

behaviors the temperature of the fluid gradually increases. 

Effect of Brownian Motion Parameter Nb  

Figure 18 is drawn to illustrate the relationship between Nb  and temperature 

distribution. The temperature distribution is enhanced with rising value of .Nb  

Physically, Nb  is associated with movement of the fluid nanoparticles. The kinetic 

energy of the fluid particles increases with boosting values of Nb , due to which the 

temperature distribution of the fluid increases. Figure 19 is drawn to analyze the effect of 

Nb  on concentration profile, which shows that the increasing value of Nb  produce a 

reduction in concentration distribution. 

Effect of Suction Parameter S  

Figures 20-22 show the relationship between S  and velocity, S  and temperature and 

S  and concentration profile respectively. From the graphs it is observed that increasing 

the numerical value of S  a decrement in the velocity, temperature and concentration 

profile of the fluid occur. 
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Effect of Lewis Number Le  

Figure 23 analyzed the relation between the Lewis number Le  and concentration 

distribution. Concentration profile decreased for high value of Le  and thus we have got a 

small molecular diffusivity. Generally, concentration profile is a decreasing function of 

Lewis number. 

 

 

Figure 2: Influence of   on  'f  . 

 

Figure 3: Influence of   on    . 
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Figure 4: Influence of   on    . 

 

Figure 5: Influence of M  on  'f  . 

 

Figure 6: Influence of M  on    . 
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Figure 7: Influence of M  on    . 

 

Figure 8: Influence of Ec  on     

 

Figure 9: Influence of Nt  on     
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Figure 10: Influence of Nt  on     

 

Figure 11: Influence of Bi  on     

 

Figure 12: Influence of Bi  on     
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Figure 13: Influence of   on  'f  . 

 

Figure 14: Influence of   on    . 

 

Figure 15: Influence of R  on    . 
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Figure 16: Influence of Pr  on    . 

 

Figure 17: Influence of Q  on    . 

 

Figure 18: Influence of Nb  on     



19 

 

Figure 19: Influence of Nb  on     

 

Figure 20: Influence of S  on  'f  . 

 

Figure 21: Influence of S  on    . 
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Figure 22: Influence of S  on    . 

 

Figure 23: Influence of Le  on     

7.   Conclusion 

 

The overall conclusion drawn from the present work is summarized below. 

 Decreasing behavior due to increasing the Casson fluid parameter in the velocity 

distribution and same behavior is noticed for enhancing the numerical value of 

suction parameter. 

 For the large value of magnetic parameter, the velocity field reduce but opposite 

trend is observed in the graph of temperature and concentration distribution. 

 The temperature distribution decelerate, and the concentration distribution 

accelerate due to boosting value of Prandtl number. 

 Temperature profile rises by increasing radiation parameter and same behavior is 

observed in the temperature field because of thermophoresis parameter. 

 Uprising of temperature field is observed for the increasing value of Eckert number. 
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