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Abstract 

Cylindrical structures in many engineering constructions are used, so proper analysis 

of cylinder behavior under various conditions is important. In this paper we investigate 

the dynamic and vibrational response of carbon nanotube-reinforced carbon nanotube 

reinforced composite cylinder shell with two piezoelectric layers. The equations of 

motion are extracted by assuming Sanders shell theory using the Hamiltonian 

principle. The Quadrature Differential Method (DQM) is used to solve the equations of 

motion. Frequency changes and dynamic response (middle layer displacement) have 

been studied by varying geometric and piezoelectric parameters. Among piezoelectric 

parameters, the parameter of C11 has a lower effect than the effective transverse 

coefficient of e31 in the frequency response. Other piezoelectric parameters have very 

little effect on frequency. A mild initial heat field increases the displacement amplitude 

by decreasing the strength and brittle of the material. But the heat field reduces the 

hardness of the matrix to a greater extent and increases the frequency and amplitude 

of the displacement. 
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Introduction 

Composite cylinders are one of the most used structures in engineering structures. 

Among the materials used in the last two decades to improve the properties of 

composites are nanoparticles and piezoelectric layers. Piezoelectricity is a linear 

variable related to the microscopic structure of solids. Some ceramics become 

polarized when subjected to pressure. This linear and apparent phenomenon is 

attributed to the direct piezoelectric effect. The direct piezoelectric effect is always 

accompanied by the reverse piezoelectric effect and occurs when a piezoelectric 

component is placed in an electric field. When external pressure forces neutralize the 

dipole moment. When an external stress is applied to the piezoelectric component, the 

charges are shifted in such a way that the polarity of the dipole disappears. 

Accordingly, a polarized grid is created and the result is an electric field. Thus the 

definition of piezoelectricity is the generation of electric charge in the material by 

mechanical pressure (direct effect), and, conversely, the creation of a mechanical 

stress in response to an electric field. By changing the direction of the electric field it 

can cause pressure or tensile mechanical stress [1]. Piezoelectric materials are divided 

into two types of piezo-ceramics and piezo-polymers, such as Polyvinylidene fluoride 

[2]. The major applications of piezoelectric materials are briefly switching applications, 

keyboard production applications, audio applications as both sensors and actuators, 

Is live systems and etc. One of the studies in the field of composite cylinders with 

piezoelectric layer is Chen et al. [3] in 2007 who investigated three-dimensional free 

vibrations of a piezoelectric cylindrical tank containing compressible fluid and its 

governing equations by space method computed. Santos et al. [4] in 2007 a finite 

element model for flexural and vibration analysis of composite shell with piezoelectric 

sensor and actuator layers proposed. In 2008, Beigloo and Kani [5] the static 
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composite sheet with piezoelectric layers on two lateral surfaces studied. In 2010, 

Beigloo and Kani [6] vibrations of a multi-layered piezoelectric cylindrical shell and 

obtained the governing equations by the space-state method investigated. Eftekhar et 

al [7] Vibration smart control analysis of a temperature-dependent functionally graded 

(FG)-carbon nanotubes (CNT)-reinforced piezoelectric cylindrical shell embedded in 

an orthotropic elastic medium is investigated. Jie Xu and Shuyu Lin [8] the three-

dimensional coupled vibration of composite cylindrical piezoelectric transducers, the 

cylindrical piezoelectric transducer consists of an inner axially polarized piezoelectric 

ceramic cylinder and an outer metal cylinder with the same height studied. Wang et al 

[9] the exact theoretical models for radially polarized multilayer piezoelectric cylindrical 

transducers by taking into account the electrodes and electrical connections of 

piezoelectric layers studied. Yanqing WANG et al [10] the nonlinear free vibration of 

piezoelectric cylindrical Nano shells studied. Given that heat load is one of the common 

loads in the industry and affects components at various positions, research has also 

been conducted on the thermal loading on composite cylinders that can be found in 

Mousavi et al. [11] the dynamic and vibrational response of a thermo-elastic coupler in 

a multilayer cylindrical shell that first undergoes a low-temperature heat field and then 

enters a thermal shock using the 4th order Runge-Kutta method investigated. 

Heydarpour et al [12] a coupled thermo-elastic approach based on the Lord-Shulman 

(L-S) and Maxwell’s formulations to study the wave propagation in functionally graded 

(FG) cylindrical panels with piezoelectric layers under a thermal shock loading studied. 

Rahmani and Moslemi Petrudi [13] the vibrational and dynamic response of the 

cylindrical shell of a nanocomposite under heat shock using the DQM method 

investigated. In this paper, the vibrational and dynamic response of composite 

cylinders reinforced with carbon nanotubes and piezoelectric bilayers under thermal 

load is investigated. 
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Statement of the problem   

This paper a cylindrical shell with length L and the number of n composite layers of 

total thickness H and an outer layer of layer thickness of ha and a sensor layer of inner 

surface of shell of thickness hs investigates. The radius from the center of the shell to 

the middle of the composite layers is R and the radius from the center of the shell to 

the middle of the sensor layer is R1 and the radius from the center of the shell to the 

operating layer is R2. The middle surface of the cylinder is inserted into the cylindrical 

coordinate system x and θ and z and the distance from the middle surface is measured 

by the z coordinates whose positive direction is inside the cylinder and the 

displacement components in the x, θ and z directions are u and v and w are shown. 

Shell Geometry of Composite Cylindrical Shell with Operating Layer Above and Sensor 

at the Bottom of Composite Layers Figure 1 is shown. 

 

 

Figure 1 Shell Geometry of Composite Cylindrical Shell 
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Extraction of Equations of Motion 

To derive the equations of motion, the Sanders theory of thin shells is used. Thus the 

displacement field in the crust can be expressed by the following equations: 

(1) 

U(x,θ,z) = u(x, θ) + Z 𝜓𝑥(𝑥. 𝜃) 

V(x,θ,z) = v(x, θ) + Z 𝜓𝜃(𝑥. 𝜃) 

W(x,θ,z) = w(x, θ) 

In these relations u, v and w are the displacement components of the crust's middle 

layer in the order of x, θ, and z, respectively, and ψx and ψθ are rotations perpendicular 

to the middle surface around x and θ. Sanders developed an 8th-order shell theory 

from the principle of virtual work that the stress-strain relations for a circular cylindrical 

shell can be expressed as follows [14]: 

 

 

(2) 

𝜅𝑥 = 
𝜕𝜓𝑥
𝜕𝑥

 ԑ𝑥 = 
𝜕𝑢

𝜕𝑥
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𝑅
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𝜕𝜃

 ԑ𝑥𝜃 = 
𝜕𝑣

𝜕𝑥
+
1

𝑅
  
𝜕𝑢

𝜕𝜃
 

𝜅𝑥𝜃 = 
1

𝑅
 
𝜕𝜓𝑥
𝜕𝜃

+ 
𝜕𝜓𝜃
𝜕𝑥

+ 
1

2
 
1

𝑅
 (
𝜕𝑣

𝜕𝑥
+
1

𝑅
  
𝜕𝑢

𝜕𝜃
) ԑ𝑥𝑧 = 

𝜕𝑤

𝜕𝑥
+ 𝜓𝑥 

 
ԑ𝜃𝑧 = 

1

𝑅
 
𝜕𝑤

𝜕𝑥
− 
𝑣

𝑅
+ 𝜓𝜃 

In these equations, ԑx, ԑθ and ԑxθ are the middle layer membranes and κx, κθ and κxθ 

are the bending strains, and the ԑxz and ԑθz transverse shear strains. Assuming axial 

symmetry and force, the deformations in the lateral direction are small and neglected, 

and the relation (2) is simplified as follows [15]: 

(3) 

ԑ𝑥𝑧 = 
𝜕𝑤

𝜕𝑥
+ 𝜓𝑥 ԑ𝑥 = 

𝜕𝑢

𝜕𝑥
 

𝜅𝑥 = 
𝜕𝜓𝑥
𝜕𝑥

 ԑ𝜃 = 
𝑤

𝑅
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The equations of motion for the dynamic behavior of a circular cylindrical shell, 

assuming axial symmetry can be written from the general form of Sanders shell theory, 

as follows: [16]: 

 ∂Nxx
∂x

= I1ü(x. t) +
1

R
 ψ̈x(x. t) 

(4) ∂Mxx

∂x
− Qx = 

I2
R
 ü(x. t)  + I2 ψ̈x(x. t) 

 ∂Qx
∂x

 −  
Nθ
R
 + p δ(x − vt) =  I1ẅ(x. t) 

The result of the moment and the coefficients (I𝑖(𝑖=1 and 2)) in equations (4) are defined 

as follows: 

 

 

 

(5) 

𝑁𝑥𝑥 = ∫ 𝜎𝑥𝑥
𝑎

𝑧0

𝑧1

2𝜋𝑅2 𝑑𝑧 + ∫ 𝜎𝑥𝑥
𝑐𝑜𝑚

𝑧1

𝑧2

2𝜋𝑅 𝑑𝑧 + ∫ 𝜎𝑥𝑥
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2𝜋𝑅1 𝑑𝑧   

𝑁𝜃 = ∫ 𝜎𝜃
𝑎
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𝑧1

 𝐿 𝑑𝑧 + ∫ 𝜎𝜃
𝑐𝑜𝑚

𝑧1

𝑧2

𝐿 𝑑𝑧 + ∫ 𝜎𝜃
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𝑧2

𝑧3

𝐿 𝑑𝑧   

𝑀𝑥𝑥 = ∫ 𝜎𝑥𝑥
𝑎

𝑧0

𝑧1

2𝜋𝑅2 𝑧 𝑑𝑧 + ∫ 𝜎𝑥𝑥
𝑐𝑜𝑚

𝑧1

𝑧2

2𝜋𝑅 𝑧 𝑑𝑧 + ∫ 𝜎𝑥𝑥
𝑠

𝑧2

𝑧3

2𝜋𝑅1 𝑧 𝑑𝑧   

𝑄𝑥 = ∫ 𝜎𝑥𝑧
𝑐𝑜𝑚

𝑧1

𝑧2

 2𝜋𝑅 𝑑𝑧 

(𝐼1 . 𝐼2) = ∫ 𝜌
𝑧𝑗
𝑧𝑖

(1  . 𝑧2)𝑑𝑧 

To obtain the equation governing the motion of the cylindrical shell comprising the 

composite layer and the piezo-electric layers of the sensor and operator, it is sufficient 

to place the stress values in relation (5). Properties of composite material reinforced 

by carbon nanotube are obtained using the following relations [17]: 

𝐸11𝐶 = 
1
𝑉𝐶𝑁𝑇𝐸11

𝐶𝑁𝑇 + 𝑉𝑚𝐸
𝑚   

(6) 


2

𝐸22𝐶
=
𝑉𝐶𝑁𝑇

𝐸22
𝐶𝑁𝑇 +

𝑉𝑚
𝐸𝑚

 


3

𝐺12𝐶
=
𝑉𝐶𝑁𝑇

𝐺12
𝐶𝑁𝑇 +

𝑉𝑚
𝐺𝑚

 

12𝐶 = 𝑉𝐶𝑁𝑇12
𝐶𝑁𝑇

+ 𝑉𝑚
𝑚

 

𝜌0𝐶 = 𝑉𝐶𝑁𝑇𝜌0
𝐶𝑁𝑇 + 𝑉𝑚𝜌0

𝑚 
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𝛼11𝐶 = 𝑉𝐶𝑁𝑇𝛼11
𝐶𝑁𝑇 + 𝑉𝑚𝛼

𝑚 

𝛼22𝐶 = (1 +12
𝐶𝑁𝑇

)𝑉𝐶𝑁𝑇𝛼22
𝐶𝑁𝑇 + (1 +

𝑚
)𝑉𝑚𝛼

𝑚 −12𝛼11𝐶 

In this relation E11
CNT and E22

CNT are elastic modulus and G12
CNT shear modulus of single-

walled carbon nanotubes. 1,2 and 3 are the carbon nanotube performance 

parameters. VCNT and Vm, respectively, are the volume fraction of carbon nanotubes 

and matrices that apply to the VCNT + Vm =1 relation.12
CNT

and ρ0
CNT are Poisson's ratio 

and density of carbon nanotubes 
m

 and ρ0
m are Poisson's ratio and density of matrix. 

In these relations, α11
CNT.  α22

CNT and  m are the thermal expansion coefficients of the 

carbon nanotube and the matrix. 

Composite layer relations 

In shell and plate theory, it is appropriate to integrate the stresses along the shell 

thickness to introduce the resulting force and moment. The basic equations of a shell 

for a non-isotropic material are assumed as follows [18]: 

(7) 

NX = A11εx + A12εθ + B11kx − Nx
T 

Nθ = A12εx + A22εθ + B12kx − Nθ
T 

MX = B11εx + B12εθ + D11kx −Mx
T 

Mθ = B12εx + B22εθ + D12kx −Mθ
T 

Qx = A55εxz                                                            

Where the strains are inserted from relation (3) and the coefficients A, B and D are 

defined for the composite layers [11]: 

(8) 

[𝐴𝑖𝑗    𝐵𝑖𝑗    𝐷𝑖𝑗] = ∑ ∫ �̅�𝑖𝑗{1. 𝑧. 𝑧
2}

𝑧𝑘

𝑧𝑘−1

𝑁

𝑘=1

𝑑𝑧 

A55 = ∑∫ �̅�55

𝑧𝑘

𝑧𝑘−1

𝑁

𝑘=1

𝐾5
2𝑑𝑧 
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Where Q̅11 , Q̅12 , Q̅22 and Q̅55 for composite layers are defined as follows [18]: 

(9) 

�̅�11 = 𝑄11 𝑐
4 + 2(𝑄12 + 2 𝑄66)𝑐

2𝑠2 + 𝑄22 𝑠
4 

�̅�12 = (𝑄11 + 𝑄22 − 4 𝑄66) 𝑐
2𝑠2 + 𝑄12 (𝑠

4 + 𝑐4) 

�̅�22 = 𝑄11 𝑠
4 + 2(𝑄12 + 2 𝑄66)𝑐

2𝑠2 + 𝑄22 𝑐
4 

�̅�55 = 𝑄55 𝑐
2 + 𝑄44 𝑠

2 

Where Q coefficients for orthotropic layers are defined as follows [18]: 

(10) 

𝑄44 =  𝐺23 
𝑄11 = 

𝐸1
1 − 𝜈12 𝜈21

 

𝑄55 =  𝐺13 
𝑄12 = 

𝜈12 𝐸2
1 − 𝜈12 𝜈21

 

𝑄66 =  𝐺12 
𝑄22 = 

𝐸2
1 − 𝜈12 𝜈21

 

Now by inserting the relation (10) in the relation (9) and then the relation (9) in the 

relation (8) and finally by the relation (7), the equations of force and moment for the 

composite layer are obtained. To obtain the equations of motion, Hamilton's principle 

is used for these equations and the general form of this principle is as follows: 

(11) ∫ 𝛿𝐿𝑑𝑡 = ∫ (𝛿𝐾− 𝛿𝑈)𝑑𝑡 = 0
𝑇

0

𝑇

0
 

To solve the thermos-elastic coupling problems, it is necessary to solve the equations 

of motion and energy equations simultaneously. 

(12) 𝑘𝑖𝑗𝑇𝑖𝑗 − [𝑐𝑣𝜌�̇� + 𝑇𝑎𝛽𝑖𝑗�̇�𝑖𝑗] = 0 

(13) T(x. θ. z. t) = T0(x. θ. t) + zT1(x. θ. t) 

In this respect, T1 and T0 are functions to be obtained from the equation system and 

Cv is the specific heat capacity per unit volume. The Galerkin method is used to obtain 

two non-dependent equations of thermal conductivity of the shell from Equation (12) 

and with its average at z-shell thickness, assuming a linear distribution in the shell 

thickness given by Equation (13). The two variables T1 and T0 fall into the energy 

equations. For the multilayer cylindrical shell under heat shock with axial symmetry 
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and uniform distribution along x, the energy equation 8 in terms of displacement terms 

is summarized [19]: 

 (14) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 

𝜌𝑐�̇� + 𝑇𝑎 [𝛽𝑥𝑥�̇�.𝑥 +
𝛽𝜃𝜃
𝑅 + 𝑧

�̇� + 𝛽𝑧𝑧�̇�.𝑧 + 𝛽𝑥𝜃�̇�.𝑥] − 𝑘𝑥𝑥
𝜕2𝑇

𝜕𝑥2
− 𝑘𝑧𝑧(

𝜕2𝑇

𝜕𝑧2
+

1

𝑅 + 𝑧

∂T

∂z
) 

The following two integrals give two independent energy equations using two 

independent functions T1 and T0: 

(15) 

∫(

 

𝑧

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙). (1). 𝑑𝑧 = 0. 

𝑅𝑐
(1)
�̇�0 + 𝑅𝑐

(2)
�̇�1 + 𝑅𝑥

(1)
�̇�0.𝑥 + 𝑅𝑥

(2)
Ѱ̇𝑥.𝑥 + 𝑅𝜃𝑥

(1)
Ѱ̇𝜃.𝑥 + 𝑅𝜃𝑥

(1)
�̇�0.𝑥 

+𝑅𝑧
(2)
Ѱ̇𝑧 + 𝑅𝑥

(2)
�̇�𝑧 +

1

𝑅
𝑅𝜃
(1)
�̇�0 +

1

𝑅
𝑅𝜃
(2)
Ѱ̇𝑧 +

1

2𝑅
𝑅𝜃
(3)
�̇�𝑧 

+𝑅𝑘𝑥
(1)
�̇�0.𝑥𝑥 + 𝑅𝑘𝑥

(2)
�̇�1.𝑥𝑥 −

1

𝑅
𝑅𝑘𝑧
(1)
𝑇1 − (ℎ𝑖 − ℎ𝑜)𝑇0 + ℎ(ℎ𝑖 − ℎ𝑜)𝑇1 + [ℎ𝑖𝑇𝑖(𝑡) − ℎ0𝑇∞] = 0 

and 

(16) 

∫(

 

𝑧

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙). (𝑧). 𝑑𝑧 = 0. 

𝑅𝑐
(2)
�̇�0 + 𝑅𝑐

(3)
�̇�1 + 𝑅𝑥

(2)
�̇�0.𝑥 + 𝑅𝑥

(3)
Ѱ̇𝑥.𝑥 + 𝑅𝜃𝑥

(2)
Ѱ̇𝜃.𝑥 

+𝑅𝜃𝑥
(2)
�̇�0.𝑥 + 𝑅𝑧

(3)
Ѱ̇𝑧 + 𝑅𝑥

(3)
�̇�𝑧 +

1

𝑅
𝑅𝜃
(2)
�̇�0 +

1

𝑅
𝑅𝜃
(3)
Ѱ̇𝑧 

+
1

2𝑅
𝑅𝜃
(4)
�̇�𝑧 + 𝑅𝑘𝑥

(2)
�̇�0.𝑥𝑥 + 𝑅𝑘𝑥

(3)
�̇�1.𝑥𝑥 −

1

𝑅
𝑅𝑘𝑧
(2)
𝑇1 

−ℎ[(ℎ𝑖 − ℎ𝑜)𝑇0 − (ℎ𝑖 − ℎ𝑜)𝑇1 − (ℎ𝑖𝑇𝑖(𝑡) − ℎ0𝑇∞)] = 0 
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Piezoelectric layer relationships 

The piezoelectric relationships are indexed as follows [20]: 

(17) 

{
 
 

 
 
𝜎𝑥
𝜎𝜃
𝜎𝑧
𝜎𝑧𝜃
𝜎𝑥𝑧
𝜎𝑥𝜃}

 
 

 
 

=  

[
 
 
 
 
 
𝑐11 𝑐12
𝑐21 𝑐22

𝑐13    0
𝑐23    0

 0     0
 0     0

𝑐31 𝑐32
0 0

   𝑐33 0
   0 𝑐44

 0     0
 0     0

0    0
0    0

    0    0
    0    0

 𝑐55  0
 0   𝑐66]

 
 
 
 
 

 

{
 
 

 
 
ԑ𝑥
ԑ𝜃
ԑ𝑧
𝛾𝑧𝜃
𝛾𝑥𝑧
𝛾𝑥𝜃}

 
 

 
 

− 

[
 
 
 
 
 
0
0

0
0

𝑒13
𝑒23

0
0

0
𝑒42

𝑒33
0

𝑒51
0

0
0

0
0 ]
 
 
 
 
 

 {

𝐸𝑥
𝐸𝜃
𝐸𝑧

} 

(18) {

𝐷𝑥
𝐷𝜃
𝐷𝑧

}  =  [
0 0 0 0 𝑒51 0

0 0 0 𝑒42 0 0
𝑒13 𝑒23 𝑒33 0 0 0

] 

{
 
 

 
 
ԑ𝑥
ԑ𝜃
ԑ𝑧
𝛾𝑧𝜃
𝛾𝑥𝑧
𝛾𝑥𝜃}

 
 

 
 

+ [

є11 0 0
0 є22 0
0 0 є33

] {

𝐸𝑥
𝐸𝜃
𝐸𝑧

} 

In these relations σ stress and ԑ strain and E are electric field intensities, D electric 

displacement, c, e and μ are the piezoelectric layer coefficients. Due to the thinness of 

the piezo layer, we skip the shear term in this layer and thus in the equations (19), 

piezoelectric layers [20]: 

(19) 

𝜎𝑥 = 𝑐11ԑ𝑥 + 𝑐12ԑ𝜃 + 𝑐13ԑ𝑧 − 𝑒13 𝐸𝑧   

𝜎𝜃 = 𝑐12ԑ𝑥 + 𝑐22ԑ𝜃 + 𝑐23ԑ𝑧 − 𝑒23 𝐸𝑧   

𝐷𝑧 = 𝑒13ԑ𝑥 + 𝑒23ԑ𝜃 + 𝑒33ԑ𝑧 + є33 𝐸𝑧     

Sensor layer relationships 

Since there is no external electrical charge in the sensor, the electrical displacement 

of this layer will be zero along the radius, so for the sensor layer: 

(20) 𝐷𝑧 = 𝑒13 ԑ𝑥 + 𝑒23 ԑ𝜃 + 𝑒33 ԑ𝑧 + є33 𝐸𝑧 = 0   

Then 

(21) 𝐸𝑧
𝑠 = −

1

є33
 (𝑒13 ԑ𝑥 + 𝑒23 ԑ𝜃 + 𝑒33 ԑ𝑧)   

By inserting the relation (21) into the relation (19), the stress relations for the sensor 

layer will be obtained: 
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(22) 

𝜎𝑥
𝑠 = 𝑐11ԑ𝑥 + 𝑐12ԑ𝜃 + 𝑐13ԑ𝑧 +

𝑒13
є33

 (𝑒13 ԑ𝑥 + 𝑒23 ԑ𝜃 + 𝑒33 ԑ𝑧)   

𝜎𝜃
𝑠 = 𝑐12ԑ𝑥 + 𝑐22ԑ𝜃 + 𝑐23ԑ𝑧 +

𝑒23
є33

 (𝑒13 ԑ𝑥 + 𝑒23 ԑ𝜃 + 𝑒33 ԑ𝑧) 

Accordingly, by equating the electric field intensity in the sensor and the experimental 

relation Ei = φi [21] integral with z: 

(23) 

𝑉𝑠  =  ∫ 𝐸𝑧
𝑠 𝑑𝑧

𝑧1

𝑧0

   

𝑉𝑠  =  − 
 ℎ𝑠
є33

 (𝑒13  
𝜕𝑢0
𝜕𝑥

+ 𝑒23 
𝑊(𝑥 . 𝜃)

𝑅
)𝑠   

According to the second-order shell theory, the power-moment relationship of the 

sensor layer is defined as follows [22]: 

(24) 

𝑁𝑥
𝑠 = ∫ 𝜎𝑥

𝑠
𝑧0

𝑧1

2 𝜋 𝑅1 𝑑𝑧 

𝑀𝑥
𝑠 = ∫ 𝜎𝑥

𝑠
𝑧0

𝑧1

2 𝜋 𝑅1 𝑧 𝑑𝑧 

𝑁𝜃
𝑠 = ∫ 𝜎𝜃

𝑠
𝑧0

𝑧1

 𝐿 𝑑𝑧 

By inserting the relation (22) into the relation (24), the force and momentum for the 

sensor layer is obtained as follows: 

(25) 

𝑁𝑥
𝑠 =  2 𝜋 𝑅1 ℎ𝑠 [(𝑐11 + 

𝑒13
2

є33
) 
𝜕𝑢0
𝜕𝑥

+ (𝑐12 + 
𝑒13  𝑒23 
є33

) 
𝑊(𝑥 . 𝜃)

𝑅
] 

𝑀𝑥
𝑠 =  2 𝜋 𝑅1 (

𝑧0
2 − 𝑧1

2 

2
) [(𝑐11 + 

𝑒13
2

є33
) 
𝜕𝑢0
𝜕𝑥

+ (𝑐12 + 
𝑒13  𝑒23 
є33

) 
𝑊(𝑥 . 𝜃)

𝑅
] 

𝑁𝜃
𝑠 =  𝐿 ℎ𝑠 [(𝑐12 + 

𝑒13  𝑒23 
є33

) 
𝜕𝑢0
𝜕𝑥

+ (𝑐22 + 
𝑒23
2

є33
) 
𝑊(𝑥 . 𝜃)

𝑅
]   

Operator Layer Relations 

To obtain the equations governing the operator, it can be assumed that the distribution 

of the electrical potential within the operator is as a first-order function [23] in the 

following relation: 
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(26) 𝜑𝑎 = 𝜑0 + 𝑧 𝜑1   

Now that the potential difference is required in the operator, then the following electrical 

boundary conditions are considered: 

(27) 
𝜑 = 𝑉𝑎            𝑎𝑡               𝑧 =  𝑧𝑁+2 = 

−𝐻

2
− ℎ𝑎 

𝜑 = 0             𝑎𝑡               𝑧 =  𝑧𝑁+1 = 
−𝐻

2
            

 

Using the above boundary conditions and using the Maxwell [23] relation, the following 

relation will be obtained for the distribution of the electric potential: 

(28) 𝜑𝑎 = −
𝐻 𝑉𝑎

2 ℎ𝑎
− 𝑧 

 𝑉𝑎

 ℎ𝑎
   

Accordingly, Ez [23]: 

(29) 𝐸𝑧 = − 
𝜕𝜑

𝜕𝑍
=
𝑉𝑎

ℎ𝑎
     

Accordingly, the operator stress relation will be obtained as follows: 

(30) 

σx
a = c11ԑx + c12ԑθ + c13ԑz +

e13 G hs
ha є33

 (e13  
∂u0
∂x

+ e23  
W(x . θ)

R
)    

σθ
a = c12ԑx + c22ԑθ + c23ԑz +

e23 G hs
ha є33

  (e13  
∂u0
∂x

+ e23  
W(x . θ)

R
) 

According to the second-order shell theory, the force-moment relations of the operating 

layer are defined as follows [22]: 

(31) 

𝑁𝑥
𝑎 = ∫ 𝜎𝑥

𝑎
𝑧𝑁+1

𝑧𝑁+2

2 𝜋 𝑅2 𝑑𝑧 

𝑀𝑥
𝑎 = ∫ 𝜎𝑥

𝑎
𝑧𝑁+1

𝑧𝑁+2

2 𝜋 𝑅2 𝑧 𝑑𝑧 

Nθ
a = ∫ σθ

a
zN+1

zN+2

 L dz 

By inserting relation (30) in relation (31), the force and momentum for the operator 

layer are obtained as follows: 

(32) 

Nx
a =  2 π R2 ha [(c11 + 

e13
2  G hs
ha є33

) 
∂u0
∂x

+ (c12 + 
e13  e23  G hs
ha є33

) 
W(x . θ)

R
] 

Mx
a =  2 π R2 (

z0
2 − z1

2 

2
) [(c11 + 

e13
2

є33
) 
∂u0
∂x

+ (c12 + 
e13  e23 
є33

) 
W(x . θ)

R
] 
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Nθ
a =  L ha [(c21 + 

e13  e23 G hs 

ha є33
) 
∂u0
∂x

+ (c22 + 
e23
2  G hs
ha є33

) 
W(x . θ)

R
] 

The equations of motion of the cylindrical shell 

By inserting equations (7) and (25) and (32) in relation (5) and then inserting relation 

(5) in relation (4), the equations of motion of the cylindrical shell will be obtained as 

follows: 

(33) 

A1
∂2u

∂x2
+
A3
R

∂w

∂x
+ A2

∂2Ѱx
∂x2

− at1
2
∂T0
∂x

− bt1
2
∂T1
∂x

= I1
∂2u

∂t2
+
1

R

∂2Ѱx
∂t2

 

𝐴4
𝜕2𝑤

𝜕𝑥2
+ 𝐴5

𝜕Ѱ𝑥
𝜕𝑥

+ 𝐴6
𝜕𝑢

𝜕𝑥
+ 𝐴7

𝑤

𝑅
−
(𝑎𝑡2

4𝑇0 + 𝑏𝑡2
4𝑇1)

𝑅
= 𝐼1

𝜕2𝑤

𝜕𝑡2
 

𝐴8
𝜕2𝑢

𝜕𝑥2
+ 𝐴10

𝜕𝑤

𝜕𝑥
+ 𝐴9

𝜕2Ѱ𝑥
𝜕𝑥2

− 𝑏𝑡1
2
𝜕𝑇0
𝜕𝑥

− 𝑐𝑡1
2
𝜕𝑇1
𝜕𝑥

+ 𝐴11Ѱ𝑥 =
𝐼2
𝑅

𝜕2𝑢

𝜕𝑡2
+ 𝐼3

𝜕2Ѱ𝑥
𝜕𝑡2

    

The coefficients Ai (i=1 to 11) and Ii (i=1 to 2) are defined as follows: 

(34) 

𝐴1 = 𝐴11 + 2 𝜋 𝑅1ℎ𝑆 (𝐶11 + 
𝑒13 

2

є33
) + 2 𝜋 𝑅2 ℎ𝑎 (𝐶11 + 

𝑒13 
2 ℎ𝑆 𝐺 

ℎ𝑎 є33
) 

𝐴2 = 𝐵11   

𝐴3 = 
𝐴12
𝑅
+
2 𝜋 𝑅1ℎ𝑆

𝑅
(𝐶12 + 

𝑒13 𝑒23  

 є33
) +

2 𝜋 𝑅2ℎ𝑎
𝑅

(𝐶12 + 
𝑒13 𝑒23 ℎ𝑆 𝐺

ℎ𝑎 є33
)   

𝐴4 = 𝐴55 

𝐴5 = 𝐴55 − 
𝐵12
𝑅

 

𝐴6 = 
−𝐴12
𝑅

−
𝐿 ℎ𝑆
𝑅

(𝐶12 + 
𝑒13 𝑒23  

 є33
) −

𝐿 ℎ𝑎
𝑅

(𝐶12 + 
𝑒13 𝑒23 ℎ𝑆 𝐺

ℎ𝑎 є33
)   

𝐴7 = 
−𝐴22
𝑅2

−
𝐿 ℎ𝑆
𝑅2

(𝐶22 + 
𝑒23 

2 

 є33
) −

𝐿 ℎ𝑎
𝑅2

(𝐶22 + 
𝑒23 

2 ℎ𝑆 𝐺

ℎ𝑎 є33
)   

𝐴8 = 𝐵11  + 2 𝜋 𝑅1ℎ𝑆ℎ𝑚
𝑠 (𝐶11 + 

𝑒13 
2 

 є33
) + 2 𝜋 𝑅2ℎ𝑎ℎ𝑚

𝑎 (𝐶11 + 
𝑒13 

2 ℎ𝑆 𝐺

ℎ𝑎 є33
)   

𝐴9 = 𝐷11   

𝐴10 = 
𝐵12
𝑅
 − 𝐴55 +

2 𝜋 𝑅1ℎ𝑆 ℎ𝑚
𝑠

𝑅
(𝐶12 + 

𝑒13 𝑒23  

 є33
) +

2 𝜋 𝑅2ℎ𝑎 ℎ𝑚
𝑠

𝑅
(𝐶12 + 

𝑒13 𝑒23 ℎ𝑆 𝐺

ℎ𝑎 є33
) 

𝐴11 = − 𝐴55 
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𝐼1 = 𝜌𝑎  ℎ𝑎 + 𝜌𝑠  ℎ𝑠 + 𝜌𝑐𝑜𝑚  𝐻 

𝐼2 = 𝜌𝑠  (
𝑧0
3  −  𝑧1

3  

3
) + 𝜌𝑎  (

 𝑧𝑁+1
3  −  𝑧𝑁+2

3   

3
) + ∑ 𝜌𝑐𝑜𝑚  (

 𝑧𝑘−1
3  −  𝑧𝑘

3  

3
)

𝑁+1

𝑘=2

 

In the energy equations and motion equations some parameters are omitted because 

of axial symmetry 
𝜕 

𝜕𝜃
= 0 So the three equations of motion and the two energy 

equations remain as partial derivatives which must be written in the matrix 𝑀�̈� + 𝐶�̇� +

𝐾𝑥 = 𝐹 and the final form of the ordinary differential equations is as follows: 

(35) 

−
𝐴1(𝑚𝜋)

2

2𝐿
𝑈𝑚 +

𝐴3(𝑚𝜋)

2𝑅
𝑊𝑚 −

𝐴2(𝑚𝜋)
2

2𝐿
Ѱ𝑥 − 𝑎𝑡1

2
(𝑚𝜋)

2
𝑇0𝑚 

−𝑏𝑡1
2
(𝑚𝜋)

2
𝑇1𝑚 −

𝐿𝐼1
2
�̈�𝑚(𝑡) −

𝐿𝐼2
2
Ѱ̈𝑥𝑚(𝑡) = 0 

𝑅2𝐴6(𝑚𝜋)

2
𝑈𝑚 − 𝑅

2
𝐴7𝐿

2
𝑊𝑚 +

𝑅𝐴11(𝑚𝜋)

2
Ѱ𝑥𝑚 −

𝑅𝑎𝑡2
4𝐿

2
𝑇0𝑚 

−
𝑅𝑏𝑡2

4𝐿

2
𝑇1𝑚 +

𝐴11(𝑚𝜋)
2

2𝐿
𝑊𝑚 −

𝐼1𝐿

2
�̈� = 0 

−
𝐴8(𝑚𝜋)

2

2𝐿
𝑈𝑚 −

𝐴9(𝑚𝜋)
2

2𝐿
Ѱ𝑥𝑚 +

𝐴11(𝑚𝜋)
 

2𝑅
𝑊𝑚 

−
𝑎45𝐿

2
Ѱ𝑥𝑚 −

𝐿𝐼2
2
�̈�𝑚 −

𝐿𝐼3
2
Ѱ̈𝑚 −

𝑏𝑡1
2(𝑚𝜋)

2
𝑇0𝑚 −

𝑐𝑡1
2(𝑚𝜋)

2
𝑇1𝑚 = 0 

𝑅𝑐
(1)
𝐿

2
𝑇0̇ +

𝑅𝑐
(2)
𝐿

2
𝑇1̇ +

𝑅𝑥
(1)(𝑚𝜋)

2
�̇� +

𝑅𝑥
(2)(𝑚𝜋)

2
Ѱ𝑥̇ +

𝑅𝛳
(1)
𝐿

2𝑅
𝑤0̇ 

−
𝑅𝑘𝑥
(1)(𝑚𝜋)2

2𝐿
𝑇0 −

𝑅𝑘𝑥
(2)(𝑚𝜋)2

2𝐿
𝑇1 +

𝑅𝑘𝑧
(1)
𝐿

2𝑅
𝑇1 −

(ℎ𝑖 − ℎ𝑜)𝐿

2
𝑇0 

+
(ℎ𝑖 − ℎ𝑜)ℎ𝐿

2
𝑇1 − [ℎ𝑖𝑇𝑖(𝑡) − ℎ0𝑇∞]

𝐿

𝑚𝜋
𝑐𝑜𝑠 (

𝑚𝜋

𝐿
𝑥)]
𝐿
0
= 0 

𝑅𝑐
(2)
𝐿

2
𝑇0̇ +

𝑅𝑐
(3)
𝐿

2
𝑇1̇ +

𝑅𝑥
(2)(𝑚𝜋)

2
�̇� +

𝑅𝑥
(3)(𝑚𝜋)

2
Ѱ𝑥̇ +

𝑅𝛳
(2)
𝐿

2𝑅
𝑤0̇ −

𝑅𝑘𝑥
(2)(𝑚𝜋)2

2𝐿
𝑇0 −

𝑅𝑘𝑥
(3)(𝑚𝜋)2

2𝐿
𝑇1 +

𝑅𝑘𝑧
(2)
𝐿

2𝑅
𝑇1 −

ℎ(ℎ𝑖 − ℎ𝑜)𝐿

2
𝑇0 

+
(ℎ𝑖 − ℎ𝑜)ℎ𝐿

2
𝑇1 + [ℎ𝑖𝑇𝑖(𝑡) − ℎ0𝑇∞]

𝐿

𝑚𝜋
𝑐𝑜𝑠 (

𝑚𝜋

𝐿
𝑥)]
𝐿
0
= 0 
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Solution by DQM Method 

DQM is one of the numerical methods in which the weighted coefficients of the 

governing differential equations are converted into first-order algebraic equations. 

Thus, at each point, the derivative will be expressed as a linear sum of the weighting 

coefficients and the function values at that point and the other points in the domain and 

in the coordinate axis. In general, in these methods, the one-dimensional function 

derivative is defined as follows [24-25]: 

(36)  ( )

1

 ,  1,2,..., 1
i

n N
n

ij jn x x
j

d f
C f x n N

dx 


  
   

Where the f(x) is desired function Cij is derivative weights and N is the number of grid 

points. The relation (36) is called the quadratic differential. Two important factors in 

this method are the selection of sample points and weighting coefficients. There are 

several ways to select sample points. The simplest is the choice of dividing the domain 

into points with equal distance that the experience shown will have no accurate answer. 

Using orthogonal polynomial roots is one of the common methods in selecting sample 

points with uneven distances. The roots of Chebyshev polynomials are used 

extensively in engineering issues and produce good results. This distance is expressed 

as follows [26]: 

(37) 

1
1 cos ,   1,2,...,

2 1

1
1 cos ,    1,2,...,

2 1

i

j

L i
x i N

N

W j
y j M

M





  
       

  
       

 

Various methods have been proposed to obtain the weighting coefficient matrix. In 

these methods, the function-function is assumed to be known. By deriving this function 

and satisfying the equality, you gain weight coefficients. This hypothetical function 

used to obtain weight coefficients is called the test function.in order to have no 
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constraint on the number of grid points used for the approximation and the weighting 

coefficients, the Lagrange interpolated polynomials fi(x) are expressed by: 

(38) 
1

( )
( ) , 1,2,...,

( ) ( )i i

L x
g x i N

x x L x
 


 

Where 𝐿(𝑥) = ∏ (𝑥 − 𝑥𝑗)
𝑁
𝑗=1  ,also L1(x) is a derivative of Lagrange's orthogonal 

polynomial function of order N and is defined as 𝐿(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑗)
𝑁
𝑗=1 , By 

substituting Eq (38).  

(39) 

For ij  ,i,j=1,2,…,N (1) 1

1

( )

( ) ( )

i
ij

i j j

L x
C

x x L x



 

For i=j ,i,j=1,2,…,N (1) 1

1,ij ijj j i
C C

 
   

The vibration modes of composite circular cylindrical shells are characterized by n, the 

number of circumferential waves and m, the number of axial waves. A general 

expression for the displacement components in any mode may be written in the 

following form: 

𝑢(𝑥. 𝜃. 𝑡) = 𝑈(𝑥) cos(𝑛𝜃) sin (𝜔𝑡)  

 

(40) 
𝑣(𝑥. 𝜃. 𝑡) = 𝑉(𝑥) sin(𝑛𝜃) sin (𝜔𝑡) 

𝑤(𝑥. 𝜃. 𝑡) = 𝑊(𝑥) cos(𝑛𝜃) sin (𝜔𝑡) 

Ѱ𝑥(𝑥. 𝜃. 𝑡) = Ѱ𝑥(𝑥) 𝑐𝑜𝑠(𝑛𝜃) 𝑠𝑖𝑛 (𝜔𝑡) 

By writing the equations of motion (35) by application of differential quadrature method 

(DQM) the following set of equations are obtained: 

(41) 

−
𝐴1(𝑚𝜋)

2

2𝐿
𝑈𝑚 +

𝐴3(𝑚𝜋)

2𝑅
𝑊𝑚 −

𝐴2(𝑚𝜋)
2

2𝐿
Ѱ𝑥 − 𝑎𝑡1

2
(𝑚𝜋)

2
𝑇0𝑚 

−𝑏𝑡1
2
(𝑚𝜋)

2
𝑇1𝑚 −

𝐿𝐼1
2
∑𝐴𝑖𝑗

(2)

𝑁

1

𝑈𝑚(𝑡) 

−
𝐿𝐼2
2
∑𝐴𝑖𝑗

(2)
Ѱ𝑥𝑚

𝑁

1

(𝑡) = 0 

𝑅2𝐴6(𝑚𝜋)

2
𝑈𝑚 − 𝑅

2
𝐴7𝐿

2
𝑊𝑚 +

𝑅𝐴11(𝑚𝜋)

2
Ѱ𝑥𝑚 

−
𝑅𝑎𝑡2

4𝐿

2
𝑇0𝑚 −

𝑅𝑏𝑡2
4𝐿

2
𝑇1𝑚 +

𝐴11(𝑚𝜋)
2

2𝐿
𝑊𝑚 −

I1L

2
∑𝐴𝑖𝑗

(2)

𝑁

1

W = 0 
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−
𝐴8(𝑚𝜋)

2

2𝐿
𝑈𝑚 −

𝐴9(𝑚𝜋)
2

2𝐿
Ѱ𝑥𝑚 +

𝐴11(𝑚𝜋)
 

2𝑅
𝑊𝑚 −

𝑎45𝐿

2
Ѱ𝑥𝑚 

−
LI2
2
∑𝐴𝑖𝑗

(2)

𝑁

1

Um −
LI3
2
∑𝐴𝑖𝑗

(2)

𝑁

1

Ѱm −
𝑏𝑡1
2(𝑚𝜋)

2
𝑇0𝑚 −

𝑐𝑡1
2(𝑚𝜋)

2
𝑇1𝑚 = 0 

Rc
(1)
L

2
∑𝐴𝑖𝑗

(1)

𝑁

1

T0 +
Rc
(2)
L

2
∑𝐴𝑖𝑗

(1)

𝑁

1

T1 +
Rx
(1)(mπ)

2
∑𝐴𝑖𝑗

(1)

𝑁

1

u +
Rx
(2)(mπ)

2
∑𝐴𝑖𝑗

(1)

𝑁

1

Ѱ𝑥 

+
Rϴ
(1)
L

2R
∑𝐴𝑖𝑗

(1)

𝑁

1

w0 −
𝑅𝑘𝑥
(1)(𝑚𝜋)2

2𝐿
𝑇0 

−
𝑅𝑘𝑥
(2)(𝑚𝜋)2

2𝐿
𝑇1 +

𝑅𝑘𝑧
(1)
𝐿

2𝑅
𝑇1 −

(ℎ𝑖 − ℎ𝑜)𝐿

2
𝑇0 

+
(ℎ𝑖 − ℎ𝑜)ℎ𝐿

2
𝑇1 − [ℎ𝑖𝑇𝑖(𝑡) − ℎ0𝑇∞]

𝐿

𝑚𝜋
𝑐𝑜𝑠 (

𝑚𝜋

𝐿
𝑥)]
𝐿
0
= 0 

Rc
(2)
L

2
∑𝐴𝑖𝑗

(1)

𝑁

1

𝑇0 +
Rc
(3)
L

2
∑𝐴𝑖𝑗

(1)

𝑁

1

T1 +
Rx
(2)(mπ)

2
∑𝐴𝑖𝑗

(1)

𝑁

1

u 

+
Rx
(3)(mπ)

2
∑𝐴𝑖𝑗

(1)

𝑁

1

Ѱ𝑥 +
Rϴ
(2)
L

2R
∑𝐴𝑖𝑗

(1)

𝑁

1

w0 −
𝑅𝑘𝑥
(2)(𝑚𝜋)2

2𝐿
𝑇0 −

𝑅𝑘𝑥
(3)(𝑚𝜋)2

2𝐿
𝑇1 

+
𝑅𝑘𝑧
(2)
𝐿

2𝑅
𝑇1 −

ℎ(ℎ𝑖 − ℎ𝑜)𝐿

2
𝑇0 +

(ℎ𝑖 − ℎ𝑜)ℎ𝐿

2
𝑇1 

+[ℎ𝑖𝑇𝑖(𝑡) − ℎ0𝑇∞]
𝐿

𝑚𝜋
𝑐𝑜𝑠 (

𝑚𝜋

𝐿
𝑥)]
𝐿
0
= 0 

where Aij represents the weighting coefficient of order r corresponding to it grid point. 
The boundary conditions for a simply-supported shell are given as: 

(42) at x =0 and x = L u = v = w = Mxx = Ѱ𝜃 = 0     

clamped-free circular cylindrical shell. The boundary conditions for this case are given 
as: 

(43) 
at x = 0 u = v = w = Ѱx = Ѱ𝜃 =0    

at x = L u = v = w = Mxx = Ѱ𝜃 = 0         

And for clamped-clamped boundary conditions: 

(44) at x =0 and x = L u = v = w = Ѱx = Ѱ𝜃 =0     
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Results and Discussion   

The properties of carbon nanotubes are presented in Table 1 and the values of carbon 

nanotube performance parameters are presented in Table 2. 

Table 1 Material properties of single-walled carbon nanotube(10,10)(12
𝐶𝑁𝑇

= 0.175)[17] . 

Temperature (K) 700 500 300 

𝐸11
𝐶𝑁𝑇

 (TPa) 5.4744 5.5308 5.6466 

𝐸22
𝐶𝑁𝑇

 (TPa) 6.8641 6.9348 7.0800 

𝐺12
𝐶𝑁𝑇

 (TPa) 1.9644 1.9643 1.9445 

11
𝐶𝑁𝑇

(10-6/K) 4.6677 4.5361 3.4584 

2
𝐶𝑁𝑇

(10-6/K) 4.8943 8.0189 5.1682 

Table 2 Efficiency parameters for different values of VCNT [17]. 

3 2 1 VCNT 

0.934 0.934 0.149 0.11 

0.941 0.941 0.150 0.14 

1.381 1.381 0.149 0.17 

Figure 2 shows a comparison of the results of the main frequency changes at different 

L / R ratios with the reference paper [27]. The cylindrical shell specifications of this 

article are presented in Table (3). A comparison of the dimensionless frequency for the 

simple supporting state at the two ends of the cylinder is shown in Figure 2.  

Table 3 Characteristics of cylindrical shell validation [27]. 

Ρ(kg/m3) 12ʋ G23(GPa) G13(GPa) G12(GPa) E22(GPa) E11(GPa) 

1580 0.28 3.87 7.17 7.17 10.3 181 

theta3 theta2 theta1 Nplies h(m) L(m) R(m) 

90 0 90 3 0.002 2 1 
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Figure 2 Comparison of natural frequency variations with different L / R. 

Characteristics of the piezoelectric layer of the composite cylinder, including material 

and geometrical properties and piezoelectric coefficients, the results of which are in 

this section and are in Table 4 presented. 

Table 4 Characteristics of the geometry and materials of the composite cylinder shell. 

the CNT volume 

fraction 

α 22= α33 (K-1) α 11(K-1) R(m) h(m) L(m) ʋ21 ʋ12 G12(Pa) E2(Pa) E1(Pa) 

0.1 26.0810-6 0.310-6 2 0.1 4 0.017 0.28 7.17E+9 1.03E+10 1.81E+11 

 ho hi (kg/m3) Nplies mu3 C12 e31 C11 theta2 theta1 

 200 10000 7500 2 5.6E+2 7.8E+10 -5.2 1.39E+11 0 90 

Figures 3 and 4 show the displacement diagrams of the composite layer in radial and 

longitudinal directions. 
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Figure 3 Radial displacement of the center 

of the composite layer 

Figure 4 Longitudinal displacement of the 

center of the composite layer 

First, the geometrical parameters of the problem, including shell thickness, radius and 

length of the shell, and the angles of the fibers in changing the main frequencies are 

discussed. In Figure 5, the main frequency changes are with changes in the angle of 

the composite fibers observed. 

 

Figure 5 Frequency changes of cylindrical shell with angular variation of fibers. 
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Figures 6 to 8 shows the frequency variations of these geometrical parameters for the 

two support modes with two end-fixed and two end-simply supporting. Figure 6 shows 

that as the cylinder radius increases, the frequency decreases. 

 

Figure 6 The frequency changes of the cylindrical shell with the mid-layer radius at boundary 

conditions. 

The ratio of the radius to the thickness of the shell is one of the parameters commonly 

studied in the studies. As the ratio increased, the frequency increased. 

 

Figure 7 Frequency changes of the cylindrical shell with change the R / h ratio. 
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The effect of the cylindrical shell length on the frequency is shown in Figure 8. 

 

Figure 8 Frequency changes relative to cylinder length. 

In the following, the effects of piezoelectric coefficients on the main frequencies are 

discussed and the results for the different piezoelectric coefficients are given in Figures 

9 to 11. The effect of some coefficients is very small. The effect of piezoelectric 

coefficients with increasing L / R ratio increased. With the natural frequency C given 

the diagram having a direct relation to the value 11 and also the longer the ratio of the 

length of the beam thickness to the natural frequency the lower the C, the effect of 11 

is the influence of the effective piezoelectric coefficient in Figure 7. As the effective 

piezoelectric transverse coefficient increases, the natural frequency will increase. To 

verify the boundary conditions and the support, the variations are investigated and 

finally the dimensional frequency changes of the first 4 modes relative to the composite 

density are presented in Figures 12 and 13. According to the graphs, as the composite 

density increases, the mass of the beam increases and its natural frequency decreases 

for all boundary conditions. 
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Figure 9 Frequency changes relative to the 

piezoelectric coefficient C11. 

Figure 10 Frequency changes relative to 

the piezoelectric coefficient C22. 

  

Figure 11 Main frequency changes relative 

to the piezoelectric coefficient C12. 

Figure 12 Frequency modifications of the 

first 4 dimensional modes relative to the 

density for the mode. 

The effect of other piezoelectric coefficients on the main frequency changes is 

negligible, so their variation is neglected. According to the diagrams of the piezoelectric 

coefficients it is clear that most of the changes in frequency are caused by the change 

of the coefficient C11. Figure 14 shows the effect of the temperature change on the 

natural frequency, according to the results, as the temperature changes, the natural 

frequency decreases. The thermal field does not have much effect on the original 

frequency (first frequency) but increases the frequency of the subsequent frequencies 

and reduces the frequency. Figure 15 shows the effect of increasing the thermal load 

on the displacement of the composite middle layer. The presence of a mild initial heat 

field increases the displacement amplitude by decreasing the strength and brittle of the 
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material. But the heat field reduces the hardness of the matrix to a greater extent and 

increases the frequency and amplitude of the displacement. 

 
 

Figure 13 Variation of the fundamental frequency parameter with the CNT volume 

fraction.  

Figure 14 Changes in natural frequency with 

increasing temperature. 

 

Figure 15 Displacement of the middle layer with different temperature changes. 

Conclusion   

In this study, the effect of geometrical parameters on the vibrational and dynamic 

response of carbon nanotube-reinforced composite cylinder shell with piezo layers was 

investigated. The effects of geometrical parameters such as the angle of the fibers, the 

change of cross-section dimensions and the change in the support as well as the 

change of the piezoelectric coefficients were investigated. The results show that 

among the piezoelectric parameters the parameter C11 has less effect than the 

transverse effective coefficient e31 on the frequency response. The effect of other 

piezoelectric parameters on these two parameters in the low frequency response is 

also evaluated. The value of C11 is directly related to the natural frequency, and the 
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lower the length to beam ratio, the greater the effect of C11 on the natural frequency. 

As the effective piezoelectric transverse coefficient increases, the natural frequency 

will increase. The more boundary conditions are, the greater the natural frequency due 

to the increased rigidity of the structure. Also, as the density of the composite layer’s 

increases, the natural frequency decreases. The presence of a mild initial heat field 

increases the displacement amplitude by reducing the strength and brittle of the 

material. But the heat field reduces the hardness of the matrix to a greater extent and 

increases the frequency and amplitude of the displacement. 

 

APPENDIX 

𝑅𝑥
(𝑖)
=∑∫ < 𝑇𝑎𝛽𝑥𝑥 >𝑗 𝑧

(𝑖−1)𝑑𝑧
ℎ𝑗

ℎ𝑗−1

𝑁

𝑖=1

    𝑖 = 1.2.3 𝑅𝑘𝑧
(1)
=∑𝑘𝑧𝑧

𝑖 (ℎ𝑖 − ℎ𝑖−1)

𝑁

𝑖=1

. 

𝑅𝜃
(𝑖)
=∑∫ < 𝑇𝑎𝛽𝜃𝜃 >𝑗 𝑧

(𝑖−1)𝑑𝑧
ℎ𝑗
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𝑁

𝑖=1

    𝑖 = 1.2.3 𝑅𝑘𝑧
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=∑∫ 𝑘𝑧𝑧

𝑗
𝑧𝑑𝑧

ℎ𝑗
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𝑁

𝑖=1
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(𝑖)
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(𝑖−1)𝑑𝑧
ℎ𝑗

ℎ𝑗−1

𝑁
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𝑗
𝑧(𝑖−1)𝑑𝑧

ℎ𝑗

ℎ𝑗−1

𝑁

𝑖=1

     𝑖 = 1.2.3 

𝑅𝑥𝜃
(𝑖)
=∑∫ < 𝑇𝑎𝛽𝑥𝜃 >𝑗 𝑧

(𝑖−1)𝑑𝑧
ℎ𝑗

ℎ𝑗−1

𝑁

𝑖=1

    𝑖 = 1.2.3 𝑅𝑐
(𝑖)
=∑∫ < 𝜌𝑐𝑣 >𝑗 𝑧

(𝑖−1)𝑑𝑧
ℎ𝑗

ℎ𝑗−1

𝑁

𝑖=1

    𝑖 = 1.2.3 

 

 

 

 

 

 



26 

References 

1. A. Gh. Arani, S. Amir, Z. Kh. Maraghi and A. H.Gh. Arani, “Intelligent Nanocomposite 

Mechanics”, Kashan University Press, 2015 (in Persian).  

2. C.H. Kiang. M. Endo. P.M. Ajayan. G. Dresselhaus. M.S. Dresslhaus. “Size effects 

in carbon nanotubes”. phys. Lett.81(9). 1998. pp 1869 1872. 

3. Chen W.Q. Bian Z.G. Lv C.F. Ding H.J. 3D free vibration analysis of a functionally 

graded piezoelectric hollow cylinder filled with compressible fluid. Journal of Solid and 

Structure. vol. 41. 2004. pp. 947-964. 

4. Santos H. M. Soares C. Reddy J.N. A finite element model for the analysis of 3D 

axisymmetric laminated shells with piezoelectric sensors and actuators: bending and 

free vibration. Journal of Computer and Structures. 2007. 

5. A. beigloo A. Madoliat R., Static analysis of cross-ply laminated plates with 

integrated surface piezoelectric layers using differential quadrature. Composite 

Structures. 2008 (in Persian). 

6. Alibeigloo A., Kani A.M., 3D free vibration analysis of laminated cylindrical shell 

integrated piezoelectric layers using the differential quadrature method. Composite 

Structures. 2010 (in Persian).  

7. Eftekhar H, Zeynali H, Nasihatgozar M. Electro-magneto temperature-dependent 

vibration analysis of functionally graded-carbon nanotube-reinforced piezoelectric 

Mindlin cylindrical shells resting on a temperature-dependent, orthotropic elastic 

medium. Mechanics of Advanced Materials and Structures. 2018 (in Persian). 

2;25(1):1-4. 

8. Xu J, Lin S. Analysis on the three-dimensional coupled vibration of composite 

cylindrical piezoelectric transducers. The Journal of the Acoustical Society of America. 

2018 Feb 26;143(2):1206-13. 



27 

9. Wang J, Liu D, Li W, Wei P, Tang L. Effects of electrodes and electrical connections 

of piezoelectric layers on dynamic characteristics of radially polarized multilayer 

piezoelectric cylindrical transducers. Journal of Intelligent Material Systems and 

Structures. 2019 Jan;30(1):63-81. 

10. Wang Y, Liu Y, Zu JW. Nonlinear free vibration of piezoelectric cylindrical 

nanoshells. Applied Mathematics and Mechanics. 2019 May 1;40(5):601-20. 

11. Mousavi, S. A., Rahmani, M., Kaffash Mirzarahimi, M., & Mahjoub Moghadas, S. 

“The Dynamic and Vibration Response of Composite Cylindrical Shell Under Thermal 

Shock and Mild Heat Field”. Journal of Solid Mechanics, 2020 (in Persian).175-188. 

12. Heydarpour Y, Malekzadeh P, Dimitri R, Tornabene F. Thermoelastic Analysis of 

Functionally Graded Cylindrical Panels with Piezoelectric Layers. Applied Sciences.  

2020 (in Persian);10(4). 

13. M. Rahmani and A. Moslemi Petrudi, “Analytical Investigation of the Vibrational and 

Dynamic Response of Nano-Composite Cylindrical Shell Under Thermal Shock and 

Mild Heat Field by DQM Method”, J. Mod. Sim. Mater., vol. 3, no. 1, 2020 (in Persian). 

pp. 22-36. 

14. Sanders J.L.,"An Improved First-Approximation Theory of Thin Shells", NASA 

Technical Report R-24, 1959. 

15. Soykasap. O., Mecitoglu. Z., “Dynamic Response of Composite Cylindrical Shells 

to Shock Loading”. Aeronautics and Astronautics Faculty, Istanbul Technical 

University.1996. 

 16. Bert C.W. and Kumar M., "Vibration of Cylindrical Shells of Bimodulus Composite 

Materials", Journal of Sound and Vibration, Vol. 81, No.1, 1982. pp.107-121. 

17. Paul.H.S. and Venkatesan. M., “Vibration of a Hollow Circular Cylinder of 

Piezoelectric Ceramics”. Journal of the Acoustical Society of America Vol. 82. 1987. 

pp. 952-956. 



28 

18. Soykasap. O., Mecitoglu. Z., “Dynamic Response of Composite Cylindrical Shells 

to Shock Loading”. Aeronautics and Astronautics Faculty, Istanbul Technical 

University.1996. 

19. Shiari B., Eslami M.R., Shaker M.,” Thermomechanical shocks in composite 

cylindrical shells: a coupled thermoelastic finite element analysis”, Scientia Iranica 

2003 (in Persian). 10(1): 13-22.  

20. Alibeigloo A., Kani A.M., “3D free vibration analysis of laminated cylindrical shell 

integrated piezoelectric layers using the differential quadrature method”. Composite 

Structures. 2010(in Persian). 

21.Tiersten. H.F. “Linear Piezoelectric Plate Vibration”. plenum press. 1969. 

22. Kraus, H. Thin elastic shells, john Wiley, Sons, Inc, New York, USA,1967. 

23. Kargarnovin. M.H., Najafzadeh. M.M., and Viliani. N.S. “Vibration Control of 

Functionally Graded Material Plate Patched with Piezoelectric Actuators and Sensors 

Under a Constant Electric Charge”. Smart Mater. Struct. Vol. 16. No. 4. 2007 (in 

Persian). pp. 1252-1259. 

24. A. Ghorbanpour Arani, V. Atabakhshian, A. Loghman, A.R. Shajari, S. Amir, 

Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam 

theory using DQ method, Phisy. 2012 (in Persian). 2549-2555.  

25. T. Murmu, S.C. Pradhan, buckling analysis of a single-walled carbon nanotube 

embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam 

theory and using DQM, Phisy. E 41,2009. 1232-1239. 

26. O. Civalek, “Harmonic differential quadrature-finite differences coupled approaches 

for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic 

foundation”, J. Sound. Vib. 294, 2006. 966–980. 

[27] A. M. Kenny, A. A. Bigloo, “Numerical Solution of Multilayer Cylindrical Shells with 

Piezoelectric Layer”, Journal of Solid Mechanics Engineering, No. 1, 2013 (in Persian).  


	Cover
	Manuscript

