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Abstract. The dynamics of magnetic nanoparticle in a viscous liquid in rotating magnetic field has 

been studied by means of numerical simulation and analytical calculations. In the magneto- dynamics 

approximation three different modes of motion of the unit magnetization vector and particle director 

are distinguished depending on the rotating magnetic field frequency and amplitude. The specific 

absorption rate of a dilute assembly of superparamagnetic nanoparticles in rotating magnetic field is 

calculated by solving the Landau – Lifshitz stochastic equation for unit magnetization vector and 

stochastic equation for particle director. At elevated frequencies an optimal range of particle diameters 

is found where the specific absorption rate of an assembly in rotating magnetic field has a maximum. It 

is shown that for magnetic hyperthermia in rotating magnetic field it is preferable to use rotating 

magnetic fields of moderate amplitude, H0 = 100 Oe, in the frequency range 400-600 kHz. 
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Introduction 

Magnetic nanoparticles are promising for various areas of biomedicine [1-4], such as magnetic 

resonance imaging [5-7], targeted drug delivery [8-10], magnetic hyperthermia [11-20], etc. Iron oxide 

nanoparticles are most frequently used in biomedicine due to their biocompatibility, biodegradability 

and relatively high saturation magnetization. In magnetic hyperthermia [2,3,11-20], magnetic 

nanoparticles are directly introduced into tumor and are exposed to an alternating magnetic field 

(AMF) of frequency f = 100 - 500 kHz and amplitude H0 = 100 - 200 Oe. This allows one to maintain 

the temperature of the tumor about 42 C by absorbing the alternating magnetic field energy. According 

to a number of medical indications [1,3,19,20], the certain thermal effect in combination with 

radiotherapy or chemotherapy can significantly improve the results of cancer treatment. 

One of the main technological problems of current magnetic hyperthermia development stage is 

the optimal choice of sizes and magnetic parameters of nanoparticles, as well as the selection of 

appropriate AMF frequency and amplitude. Besides, a biological environment of an assembly of 

magnetic nanoparticles may be different in a human body[1-3]. In most cases magnetic nanoparticles 

penetrate directly into the tumor cells, or surrounding tissues [2, 3]. Inside the cell magnetic 

nanoparticles form usually dense clusters tightly bound to the surrounding tissues [21–24], so that the 

rotation of a nanoparticle as a whole in AMF is difficult, or completely absent. Thus, the absorption of 

the AMF energy is only associated with the dynamics of the particle magnetic moments. However, if 

nanoparticles remain distributed in biological fluids (blood, serum), the intensity of AMF energy 

absorption is determined also by the rotation of the nanoparticles as a whole in a viscous liquid 

[25,26]. 

Various mathematical approaches are necessary for a theoretical description of these processes. 

While in dense nanoparticle assemblies that are tightly bound to surrounding tissues the mechanical 

rotation of the particles is inhibited, one has to take into account the influence of strong magnetic-

dipole interaction between nanoparticles [27–32] on the energy absorption intensity. On the other 

hand, for particles distributed in a viscous liquid it is necessary to take into account [25] a coupled 

motion of the unit magnetization vector α  and nanoparticle director n  that is parallel to the direction 

of the easy anisotropy axis of a rotating nanoparticle.  

Recently, the application of a rotating magnetic field (RMF) in biomedicine, in particular in 

magnetic hyperthermia, has been studied both theoretically [33–39] and experimentally [40–43]. 

Unfortunately, the specific absorption rate (SAR) measured in the RMF [41,43] for assembly of 

particles distributed in a viscous liquid turned out to be very small, of the order of a few watts per 

gram. At the same time, the SAR of an assembly of superparamagnetic nanoparticles in AMF under 

the optimal conditions reaches the values of the order of several hundred watts per gram [3, 15-18]. It 

is possible that the geometric and magnetic parameters of the particles used in the experiments [41,43] 
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were far from optimal. Therefore, it is important to determine the optimal geometric and magnetic 

parameters of the nanoparticles, as well as the amplitudes and frequencies, at which the SAR of the 

superparamagnetic nanoparticle assembly in RMF will be large enough to be used in magnetic 

hyperthermia. 

 In this work the detailed numerical calculations of the SAR in RMF for a dilute assembly of 

superparamagnetic particles with uniaxial anisotropy distributed in a viscous liquid have been carried 

out. First, the behavior of a magnetic particle in RMF is studied in the magneto- dynamics 

approximation [25,44,45], neglecting the thermal fluctuations of the particle magnetic moment and 

particle director. On the plane of parameters (f, H0) three domains for different modes of motion of the 

unit magnetization vector and particle director are distinguished. The boundaries between these 

domains, first determined numerically, are then confirmed by analytical calculations. 

Then, the SAR of a dilute assembly of superparamagnetic nanoparticles in a RMF is calculated 

by solving the Landau – Lifshitz stochastic equation for unit magnetization vector and stochastic 

equation for particle director. It is shown that at elevated frequencies, f > 100 kHz, there is an optimal 

range of particle diameters where the SAR in RMF has a maximum. This behavior of the SAR 

resembles that in AMF, [11,25]. For iron oxide nanoparticles of optimal diameters the SAR in RMF 

reaches the values of the order of 400 – 450 W/g at a frequency f = 400 kHz and moderate amplitude, 

H0 = 100 Oe. It is important to note that for sufficiently large particle diameters the SAR in RMF is 

approximately 2 times larger than that in AMF. 

 

Magneto-dynamics approximation 

 Let us consider first the dynamics in a viscous liquid of a spherical single-domain nanoparticle 

of a sufficiently large diameter, close to the single-domain one. In this case one can neglect the 

influence of thermal fluctuations of the behavior of magnetic moment and the director of the particle 

and describe their movement in RMF in the magneto- dynamics approximation [25,44,45]. Without 

loss of generality, one can assume that the magnetic field of constant frequency f and amplitude H0 

rotates in the XY plane of the Cartesian coordinates, so that 

    ( ) ( ) ( )( )0,sin,cos 000 tHtHtH ωω=


.    (1)  

Neglecting weak magnetic damping and a small moment of inertia of a magnetic nanoparticle, the 

magneto- dynamic equations of motion of the unit vectors α  and n  in a viscous fluid have the form 

[25] 

    ( ) ( )( )nnnG
t
n





ααα −=
∂
∂ ;     (2) 

    ( )( ) ( )( )nnHtH
t k









×−×−=
∂
∂ ααγαγα

0 ,    (3) 
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where G = K/3η, η is the the liquid viscosity, K is the effective magnetic anisotropy constant of the 

nanoparticle, Hk = 2K/Ms is the particle anisotropy field, and Ms is the saturation magnetization. 

 Eqs. (1) - (3) describe the complex coupled dynamics of unit vectors α  and n  in RMF. 

Numerical solution of Eqs. (1) - (3) with a small time step following the procedure described earlier 

[25] reveals three stationary modes of motion of the vectors α  and n  as a function of the RMF 

frequency and amplitude. Figures 1a, 1b show the regular dynamics of the vector α  in the first and 

second modes of particle motion, respectively. The director of the particle moves in these modes in a 

similar way, but it has a constant time shift with respect to vector α . The dynamics of the vectors α  

and n  in the third mode of particle motion is shown in Figures 1c, 1d, respectively. The illustrative 

calculations were performed for magnetic nanoparticles of iron oxide, with a saturation magnetization 

Ms = 350 emu/cm3, magnetic anisotropy constant K = 105 erg/cm3. The liquid viscosity is assumed to 

be η = 0.01 g/(cm×s). 
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Figure 1: Dynamics of the unit magnetization vector in RMF in the magneto- dynamics approximation 

for various regimes of stationary motion of a nanoparticle in a viscous liquid: a) first mode, f = 50 kHz, 

H0 = 200 Oe; b) second mode, f = 240 kHz, H0 = 100 Oe; c) and d) particle dynamics in the third 

mode, f = 450 kHz, H0 = 400 Oe. 
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Figure 2: The domains of various magneto- dynamic modes of motion of a superparamagnetic 

nanoparticle in a viscous liquid depending on the RMF frequency and amplitude. The Brezovich area 

[46,47], recommended for medical reasons for use in magnetic hyperthermia, fH0 ≤ 6.25×104 kHz*Oe, 

is located below the black curve. 

 

 The domains of existence of various magneto- dynamic regimes I – III on the plane (f, H0) 

determined numerically at the above mentioned physical parameters are shown in Figure 2. Different 

symbols in this figure show the specific pairs of the parameters (f, H0) for which numerical 

calculations were performed. The area below the black curve in Figure 2, corresponds to the condition 

fH0 ≤ 6.25×104 kHz*Oe. This domain of applied magnetic field frequencies and amplitudes is 

recommended for medical reasons for use in magnetic hyperthermia [46,47]. 

 In the first mode existing in the domain I in Figure 2, at low and moderate RMF frequencies, 

the vectors α  and n  rotate in unison around the Z axis with the RMF frequency. However, there are 

constant phase differences between the vectors α  and n , and the magnetic field vector, respectively. 

At the same time, Z - components of the vectors α  and n  in the domain I are close to zero, so that the 

rotation of these vectors occurs in fact near the XY plane. An example of such a motion for unit 

magnetization vector α  is shown in Figure 1a. 

 In the second mode existing in the domain II in Figure 2, both vectors go out of the XY plane, 

so that they have significant components parallel to the Z axis. An example of motion of the unit 

magnetization vector in the domain II is shown in Figure 1b. The vector n  moves in the domain II 

similarly. Projections of the vectors α  and n  on the XY plane have a constant phase differences 

between themselves and with the magnetic field vector. 

 Finally, in the third mode existing in the domain III in Figure 2, the vectors α  and n  return to 

the plane of magnetic field rotation, but they move in this plane with different average frequencies. 
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The unit magnetization vector gradually lags behind the magnetic field vector and periodically jumps 

from one magnetic potential well to another. Such behavior of the unit magnetization vector 

components is shown in Figure 1c. As Figure 1d shows, the director of the particle also rotates around 

the Z axis with a reduced average frequency. When the vector α  jumps, it experiences complex 

oscillatory movement. 

 To confirm the features of the particle magneto - dynamics in RMF obtained numerically and 

to extend these results to a wide range of physical parameters, we also carried out in Appendix an 

analytical analysis of the Eqs. (1) - (3). The analytical solution constructed in Appendix describes the 

behavior of vectors α  and n  in the domains I and II on the plane of parameters (f, H0), shown in 

Figure 2. 
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Figure 3: The domains I – III of various magneto- dynamic modes of nanoparticle motion in a viscous 

liquid in RMF, obtained analytically based on equations (1) - (3) (see Appendix). 

 

The boundaries between the domains I – III of various magneto- dynamic modes of particle motion in 

viscous liquid in RMF, obtained as a result of analysis of the nonlinear system of equations 

investigated in Appendix, are shown in Figure 3. The obtained analytical results are in excellent 

agreement with the numerically defined regions of the existence of these modes shown in Figure 2 for 

specific values of Ms, K and η. 

 

SAR in RMF 

 We now turn to the SAR calculation for a dilute assembly of superparamagnetic nanoparticles 

in RMF, taking into account thermal fluctuations of the magnetic moment and the director of a 

superparamagnetic nanoparticle. The SAR calculations were carried out by solving jointly the Landau 

– Lifshitz stochastic equation for unit magnetization vector and the stochastic equation for the director 

of a superparamagnetic nanoparticle. 
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 The stochastic Landau – Lifshitz equation for the unit magnetization vector of the particle has 

the form [48-51] 

   ( ) ( )( )thefthef HHHH
t











+××−+×−=
∂
∂ αακγαγα

11 ,    (4) 

where γ1 = |γ|/(1+κ2), κ is the phenomenological damping parameter, ( )nnHHH kef




α+= 0 , and thH


 is 

the random thermal magnetic field that causes thermal fluctuations of the particle magnetic moment. 

The stochastic equation for the nanoparticle director is given by [25,51,52] 

 

    ( ) ( )( ) [ ]thNnnnnG
t
n 





,1
ξ

ααα −−=
∂
∂ ,    (5) 

where ξ = 6ηV is the friction coefficient of a particle in a viscous liquid, and thN


 is the fluctuating 

rotational moment, which describes the free Brownian rotational motion of a particle in a liquid in the 

absence of external magnetic field.  

 In accordance with the fluctuation-dissipation theorem [51], the components of the fluctuating 

rotational moment satisfy the statistical relations [52], (i,j = x,y,z) 

 

  ( ) 0, =tN ith ;  . ( ) ( ) ( )11,, 2 ttTktNtN ijBjthith −= δξδ ,   (6) 

where kB is the Boltzmann constant, T is the absolute temperature, δαβ  is the Kronecker’s symbol, and 

δ(t) is the delta function. For the components of the fluctuating thermal magnetic field there are similar 

statistical relations [48] 

 

( ) 0, =tH ith ;  ( ) ( ) ( )1
0

1,,
2 tt

VM
TktHtH ij

s

B
jthith −= δδ

γ
κ .  (7) 

The SAR of a dilute assembly of superparamagnetic nanoparticles in magnetic field rotating at a 

frequency f in the XY plane is determined by the integral 

 

    ( )∫ += yyxx
s dHdHfMSAR αα

ρ
,    (8) 

 

where ρ is the nanoparticle density. The averaged components of the unit magnetization vector <αx> 

and <αy>  are calculated by solving stochastic equations (4) - (7) and averaging the results over a 

sufficiently large number of independent numerical experiments carried out with the same magnetic 

nanoparticle under arbitrary initial conditions. 
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Figure 4:  Comparison of the SAR of a dilute assembly of superparamagnetic nanoparticles in AMF 

and RMF depending on the nanoparticle diameter for two frequencies, f = 100 and 400 kHz, at a fixed 

magnetic field amplitude, H0 = 100 Oe. 

 

 First of all, it is interesting to compare the results of the SAR calculation of a dilute assembly 

of superparamagnetic nanoparticles distributed in a viscous fluid in RMF and AMF, respectively. In 

the calculations presented in Figure 4, the saturation magnetization of nanoparticles is given by Ms = 

350 emu/cm3, the effective magnetic anisotropy constant K = 105 erg/cm3, the particle densityρ = 5 

g/cm3, the viscosity of the liquid η = 0.01 g/(cm×s), the magnetic damping constant is assumed to be κ 

= 0.1, medium temperature T = 300 K. 

 As Figure 4 shows, for a dilute assembly of superparamagnetic nanoparticles in RMF SAR 

monotonously increases with increasing particle diameter at a moderate frequency, f = 100 kHz. 

However, with an increase in the frequency, f = 400 kHz, a rather narrow region of optimal 

nanoparticle diameters appears, D = 20 - 24 nm, in which the SAR reaches its maximum values. The 

behavior of SAR depending on the nanoparticle diameter in AMF is similar. However, it is important 

to note that as Figure 4 shows, in the range of particle diameters D > 24 nm the SAR in RMF is 

approximately 2 times larger than that in AMF. 

 For completeness, we also calculated SAR in RMF for assemblies of superparamagnetic 

nanoparticles with different magnetic anisotropy constants, and in liquids of different viscosities. As 

Figure 5a shows, with a slight decrease in the magnetic anisotropy constant, the dependence of SAR 

on the average nanoparticle diameter does not change appreciably, but the SAR maximum shifts to 

larger particle diameters. Figure 5b shows the dependence of SAR on the average diameter of 

nanoparticles in liquids of various viscosities.  
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Figure 5: a) SAR in RMF for dilute assemblies of superparamagnetic nanoparticles with various 

magnetic anisotropy constants: 1) K = 105 erg/cm3, f = 100 kHz, 2) K = 105 erg/cm3, f = 400 kHz, 3) K 

= 8×104 erg/cm3, f = 100 kHz, 4) K = 8×104 erg/cm3, f = 400 kHz. b) SAR of assembly of 

superparamagnetic nanoparticles depending on the liquid viscosity. 

 

One can see in this figure that the range of optimal particle diameters varies little in the range of η = 

0.01 – 0.1 g/(cm×s), but SAR decreases with increasing viscosity, especially in the region of relatively 

large nanoparticle diameters. 

 

Results and discussion 

 The results of numerical simulations presented in Figures 4, 5 show that with an optimal choice 

of the particle diameters sufficiently large SAR values, of the order of 400–500 W/g can be obtained in 

RMF at frequency f = 400 kHz and moderate amplitude, H0 = 100 Oe. Nevertheless, the 

experimentally measured [41,43] SAR values in RMF for an assembly of iron oxide nanoparticles 

distributed in a viscous liquid turned out to be very small, only about 1.0 - 4.0 W/g. This may be due to 

the small RMF amplitudes used in experiments [41,43]. Indeed, in Ref. 43 the SAR values of the 

assembly in RMF were measured in a fairly wide frequency range, from 100 to 800 kHz. However, the 

RMF amplitude was only 1 or 2 kA/m, that is, it did not exceed 25 Oe. As our numerical simulations 

show, it is impossible to obtain noticeable SAR values with such small RMF amplitude. In Ref. 41 the 

SAR measurements were carried out at moderate frequencies, f = 130 and 160 kHz, but the RMF 

amplitude was higher, H0 = 4.1 kA/m. However, in this case the measured SAR values [41] turned out 

to be also small, of the order of 1 W/g. One can see in Figure 6 that the numerical simulations 

performed at the same RMF frequency and amplitude predict an order of magnitude larger SAR values 

that that measured in Ref. 41. 
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 It should be noted however that the numerical calculations presented in Figure 6 are carried out 

for an assembly of nanoparticles with a diameter D = 20 nm. This diameter is close to the optimal 

diameter for particles with typical magnetic parameters of iron oxide, that is, Ms = 350 emu/cm3, K = 

105 erg/cm3, ρ = 5 g/cm3. Therefore, one can assume that the small SAR values measured in [41] are 

related to the fact that the average particle diameter in this experiment was far from the optimal one, D 

≈ 20 - 24 nm. On the other hand, the calculated SAR values in RMF turned out to be slightly higher 

than the corresponding SAR values in AMF, in agreement with the results obtained in Refs. 41, 43. 
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Figure 6: Comparison of the experimentally measured [41] SAR values at frequencies f = 130, 160 

kHz and amplitude H0 = 4.1 kA/m, with the SAR calculated numerically for a dilute assembly of 

magnetic nanoparticles in AMF and RMF, respectively. 

 

The numerical results obtained show that in order to achieve sufficiently high SAR values in 

magnetic hyperthermia, great attention should be paid to the proper choice of magnetic and 

geometrical parameters of nanoparticles, as well as the selection of the appropriate RMF frequency 

and amplitude. It is worth noting that frequencies, f = 130, 160 kHz, and amplitude, H0 = 4.1 kA/m, 

investigated in Figure 6 correspond to domain I in the diagram of Figure 2. Due to moderate SAR 

values obtained numerically, this set of parameters is not suitable for magnetic hyperthermia. In order 

to determine the optimal RMF frequency and amplitude we calculated the SAR at various points in the 

diagram of Figure 2, taking into account the weaker Brezovich criterion [47], fH0 ≤ 6.25×104 kHz*Oe. 

As Figure 2 shows, in the Brezovich domain there are I and II magneto- dynamic modes of 

nanoparticle motion in RMF. In this connection, it is interesting to investigate which type of particle 

magneto- dynamics is preferable for use in magnetic hyperthermia. To answer this question, we 

performed SAR calculations for a dilute assembly of magnetic nanoparticles in RMF in two 
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characteristic cases: a) at a given frequency, f = 120 kHz, in the range of amplitudes H0 = 50 - 550 Oe, 

and b) at given field amplitude, H0 = 120 Oe, in the frequency range f = 50 - 1050 kHz. The 

calculations were performed for dilute assemblies of iron oxide nanoparticles with characteristic 

diameters D = 16, 20, 30 nm. The liquid viscosity was taken to be η = 0.01 g/(cm × s), the medium 

temperature being T = 300 K. 
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Figure 7: a) SAR of a dilute assembly of iron oxide nanoparticles of different diameters at fixed 

frequency, f = 120 kHz, depending on the RMF amplitude; b) the same for fixed RMF amplitude, H0 = 

120 Oe, depending on the field frequency. 

 

 As Figure 7a shows, at a fixed frequency, f = 120 kHz, SAR increases with increasing particle 

diameter, or RMF amplitude. However, for nanoparticles of the maximum investigated diameter, D = 

30 nm, the increase in SAR in the field interval H0 = 150 - 500 Oe is insignificant. In addition, the use 

of variable magnetic fields of large amplitude requires the generation of strong electric currents, which 

may be unsafe in a medical clinic. In this regard, it seems more promising to use in magnetic 

hyperthermia RMF of moderate amplitude, H0 = 100 - 120 Oe, but at frequencies of about 400 - 600 

kHz. As Figure 7b shows, in this case SAR values of about 400–600 W/g can be obtained in a wide 

range of nanoparticle diameters, D = 20–30 nm. 

 

Conclusions 

 In this paper, the dynamics of a superparamagnetic nanoparticle in a viscous fluid in RMF is 

studied using both numerical simulation and analytical calculations. This topic has recently attracted 

considerable interest [33–43] in view of the possibility of using magnetic nanoparticles in magnetic 

hyperthermia for the cancer treatment. Unfortunately, in experiments [41,43] very small SAR values, 

of the order of several watts per gram, have been measured in RMF for assembly of superparamagnetic 

nanoparticles distributed in a viscous liquid. However, the geometrical and magnetic parameters of the 
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particles used in the experiments [41,43] were likely to be far from optimal values. Indeed, as Figures 

4, 5 show, for nanoparticles of iron oxides very small SAR values should be observed if the particle 

diameter falls within the range of sizes D ≤ 16 nm. In addition, RMF of rather small amplitude has 

been used in these experiments. 

 Using numerical simulation we determine the optimal particle diameters, as well as the RMF 

frequencies and amplitudes, at which the SAR of the assembly is large enough for application in 

magnetic hyperthermia. First of all, for a dilute assembly of superparamagnetic nanoparticles it is 

shown that at sufficiently high RMF frequencies there is an optimal range of particle diameters where 

the SAR of the assembly reaches maximum. In addition, sufficiently large theoretical SAR values are 

obtained in the RMF. They exceed the SAR values in the AMF at the same frequency and field 

amplitude. For example, for iron oxide nanoparticles of optimal diameters, D = 20 - 24 nm, SAR in 

RMF reaches the values 400 – 450 W/g at frequency f = 400 kHz and moderate amplitude H0 = 100 

Oe. It is important to note also that in the diameter range D > 24 nm the SAR in RMF is approximately 

2 times larger than that in AMF. For magnetic hyperthermia in RMF it is preferable to use magnetic 

fields of moderate amplitude, H0 = 100 Oe, in the frequency range 400-600 kHz. In this case one can 

obtain the SAR values of the order of 400 - 600 W/g in a wide range of particle diameters, D = 20 - 30 

nm. 
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Appendix 

 Based on the numerical results presented in Figure 1, the time dependence of the unit vectors 

α  and n  within the domains I and II in Figure 2 is assumed to be 

 

  ( ) ( ) ( )( )11111 cos,sinsin,cossin θδωθδωθα −−= ttt ;    (1*) 

  ( ) ( ) ( )( )2212212 cos,sinsin,cossin θδδωθδδωθ −−−−= tttn .  (2*) 

 

Here ω = 2πf is the given angular frequency of RMF in the plane XY. Spherical angles θ1 and θ2 

describe the deviation of the vectors α  and n  from the XY plane. The angle δ1 gives a constant phase 

shift between the vector α  and the RMF vector (1), whereas angle δ2 gives a constant phase shift 

between the vectors α  and n , respectively. Thus, the unknown variables of the problem are 4 time-

independent angles, θ1, θ2 and δ1, δ2.  

First of all, it follows from Eqs. (1*), (2*) that the scalar product of unit vectors α  and n  does 

not depend on time 

 

   ( ) ( ) 21221 coscoscossinsin θθδθθαξ +== tnt  .   (3*) 

 

Substituting Eqs. (1*), (2*) into Eq. (2), one finds that this equation is satisfied under the conditions 

 

   ;  21 coscos θξθ = ;      (4*) 

    212 sinsinsin δθξθω G= .     (5*) 

 

Similarly, it can be shown that Eqs. (1*), (2*) also satisfy the Eq. (3) provided that the following 

relations are fulfilled  

 

    2210 sinsinsin δθξδ kHH = ,     (6*) 

   ( )102
2

111 cossinsincossin δδθθγθω HH k −= .    (7*) 

 

Thus, the unknown angles 2121 ,,, δδθθ  are the solutions of the nonlinear set of equations (3*) - (7*). 

 As Figure 2 shows, at fixed RMF amplitude the first mode of motion exists at sufficiently low 

frequencies. It can be shown that if both unit vectors are in the same magnetic potential well, then their 

z - components are small and negative. Further we restrict ourselves to this case. The case when the 

unit vectors lie in opposite magnetic potential wells differs only in the signs of their z - components. 
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 For the first mode of particle motion, the set of nonlinear equations (3*) - (7*) can be analyzed 

in the limit of relatively small frequencies. Let us introduce a small parameter χ = ω/G. In the limit χ 

<< 1 the equations (3*) - (7*) have the following solutions 

 

  ...sin
0

1 += χδ
H
Hk ;  ...sin 2 += χδ ;  ...

2 0
21 ++== χ

γ
πθθ

H
G  (8*) 

 

Eqs. (8*) confirm that z-components of the vectors α  and n  are small and negative. This is 

characteristic of the regime of stationary particle motion in the domain I in Figure 2. 

 For the second mode of particle motion, the z components of the unit vectors are positive (if the 

vectors belong to the same magnetic potential well) and are of the order of unity. This case is realized 

at H0 < Hk with increasing frequency, ω/G ~ 1, ω/G < 1. If the angles θ1 and θ2 are small, the set of 

equations (3*) - (7*) allows a solution 

 

( )2
0

21
1

1

kk HGGH
GH

γωω
θθ

−+
== ;  

( )21
1

1sin
kHGG γω

δ
−+

= ; 
G
ωδ =2sin .  (9*) 

 

 It is remarkable that the set of equations (3*) - (7*) also makes it possible to estimate 

analytically the boundaries between the domains I – III for various stable modes of particle motion 

shown in Figure 2. Note that equations (3*) - (5*) do not contain angle 1δ . If we eliminate the variable 

ξ from equations (4*), (5*) using equation (3*), then we arrive at the relations 

 

   
21

21
2 cossin

sincoscos
θθ
θθδ = ;  

1

2
2 2sin

2sinsin
θ
θωδ

G
= .   (10*) 

 

Using the basic trigonometric identity, one can express the angle 1θ  through the angle 2θ  

 

    ( )( )2
22

2
2

1
2 sin211cos

2
1cos θωθθ G−+= .   (11*) 

Further, using equation (5*), one can eliminate the variable ξ from equation (8*) and obtain the 

equation  

    
1

2
2

0
1 sin

sinsin
θ
θωδ

GH
H k= .      (12*) 
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Thus, the angles 211 ,, δδθ  can be considered as functions of the angle 2θ . Finally, for the angle 2θ  one 

obtains from equation (7*) the equation  

 

   ( )








−= 1

0

1
2

2
2

1
2

11 cos
2sin

2sinsincossin δ
θ

θθωθθ
γ
ω

kk H
HG

H
.  (13*) 

 

Equation (13*) has a solution for 0cos 2 <θ , 22 πθ ≈ , which corresponds to the domain I in Figure 2. 

In addition, it also has a solution for 0cos 2 >θ , which corresponds to domain II in this figure. Analysis 

of the solutions of the equation (13*) for the first and second magneto- dynamic modes of particle 

motion makes it possible to establish the domains of the existence of these modes on the plane (f, H0). 

The latter are shown in Figure 3. 
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