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Abstract 

Vibration analysis of carbon nanotubes (CNTs) is very essential field owing to their many 

promising applications in tiny instruments. The unique and interesting properties of CNTs, 

particularly their mechanical and electrical features, have fascinated industries and researchers to 

implement CNTs for production of different electromechanical devices. Research on vibration 

behavior of CNTs was done for a few decades ago. Vibrations of isotropic rotating zigzag and 

chiral single-walled carbon nanotube (SWCNTs) with ring supports are established using the 

Love’s shell theory. To discretize the governing equations of current model, Galerkin’s method 

is utilized for frequency equations of single-walled carbon nanotubes (SWCNTs). The unknown 

axial functions have assumed by characteristic beam functions which fulfill boundary conditions 

applied at the tube ends. Effects of different parameters with ring supports on the fundamental 

natural frequencies versus ratio of length-to-radius, angular speed and height-to-radius ratio have 

been investigated. The frequencies curves decrease as the length-to-diameter ratio increases. 

With the increase of angular speed the frequency curve of backward waves increases and 

forward wave decreases for rotating zigzag and chiral tubes. On the other hand, the phenomena 

of frequency versus height-to-radius ratio are counterpart of length-to-radius ratio for rotating 

boundary conditions. The frequency phenomena have been observed very pronounced with ring 
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support. Frequency value of C-C end condition is higher than those of C-F computations. The 

results of single-walled carbon nanotube are computed by using MATLAB software. To validate 

the accuracy of present model, the results have been compared with earlier 

modeling/simulations. 

Keywords 

Rotating, carbon nanotube, FGM, vibration, energy variational procedure. 

1. Introduction 

     Carbon is one of the most versatile elements that is found in nature, owing to exceptional 

characteristics, potential applications and substantial impressions on the industry. Carbon is 

found in its miscellaneous forms of diamond, graphite and polymers, which are very important 

for our lives. Since the discovery of CNTs, has become very important and interest of research 

due to considerable observation and research publications every year. CNTs have a variety of 

uses and applications in potential looking fields, some of which are charge detectors, electronics, 

communication, composite materials, biotechnology, environment, energy storage, chemical, and 

optical [1]. Therefore, in order to effectively use of CNTs in each of these fields, it is important 

that their vibration characteristics are examined. Owing to the small sizes of the micro beams, 

they are very appropriate for designing small instruments like sensors and actuators [2, 3]. There 

is considerable use of rotating tubes in different areas such as high power engine, magnetic 

shields, civil, mechanical and aerospace engineering [4-11]. The important application of the 

current investigation of rotating FG-CNT is in nano-engineering structure like a sensors and 

actuators. 

     In last fifty years, many theories have been presented for vibration of rotating and non-

rotating shells[1,2,5,9,12] and shells with ring support [13,14–21].  Reddy and co-authors 

investigated the bending, longitudinal, nonlinear, free and shear flexible vibration of FG porous 

microplates, nanobeams and carbon nanotubes within elastic medium using modified coupled 

theory, differential quadrature  (DQM) and finite element method (FEM) [22,23,24,25]. 

Moreover, these authors modified the plate theories in a very clear manner that is based on 

diverse nonlocal theory of elasticity. Many investigators studied the buckling and post buckling 
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of nano structure as nano-plates and –beams [26–33]. On the other side, due to the practical 

importance of vibration of rotating CNTs is very sparse. 

     Mouffoki et al. [34] studied the vibration of nanobeam using novel deformation theory resting 

on the elastic foundation. The influence of deformation theory is observed with displacement 

field and concluded that classical theory is less than beam theory. Wuite and Adali [35] studied 

the behavior of one dimensional CNT using multi-scale analysis. Effect of different parameters 

and volume fraction of CNT with diameter was examined. Bouafia et al. [36] and Bounouara et 

al. [37] used 3D-nonlocal theory to calculate the frequency characteristics of nano-beams and -

plates. The effects of strain and shear factor across the thickness was considered. These studies 

have an effective analysis and design of nano-structures. Ebrahimi et al. [38] used porous 

electro-elastic properties to calculate the vibration using deformation plate theory. These 

properties vary in the direction of thickness. Hamilton’s principle was used to derive the 

governing equation for FG plates. Zemri et al. [39] and Ahouel et al. [40] presented buckling, 

bending and vibration of nano-beams with different nonlocal Eringens relation. These models 

capturing the matrial parmeters with varying the thickness. Gao et al. [41] investigated the free 

vibration of porous material with little amount of graphene platelets using different boundary 

conditions. The parent metal was reinforced by four different distributions with Young’s 

modulus and shear modulus. Hussain et al. [42] assessed the fundamental natural frequencies 

frequencies (FNF) of SWCNTs using wave propagation approach based on Donnell shell theory. 

The effect of in-plane rigidity and mass density per unit lateral area with different indices of 

armchair and zigzag was considered.  

     Zhou et al. [43] developed flutter characteristic of plates using classical boundary conditions. 

According to shear deformation theory, with the conjunction of heat conduction was used to 

calculate the distribution of temperature in thickness direction. Hussain and Naeem [44,45] used 

different theories to examine the vibration of SWCNTs with wave propagation approach. The 

effect of length and thickness was observed against frequency. Also the influence of 

dimensionless frequency was investigated with armchair and zigzag indices for in-plane rigidity 

and mass density lateral area. Żur [46] presented the classical plate theory to investigate the 

numerical results of free- and non-axisymmetric results of annular plates. The governing 

equation of plates was utilized with the help of quasi-Green’s function. The vibration of these 

plates has been calculated with clamped-clamped and simply supported boundary conditions. 
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The vibration of sandwich nanoplates was observed to investigate the buckling, bending, and 

stability analysis in detail using deformation, trigonometric and hyperbolic and nonlocal theories 

[41,47,48,49,50,51,52,53,54]. 

    Shen [55] presented nonlinear bending behavior of single-walled carbon nanotubes with 

simply supported edge condition. The molecular dynamic simulation was used to obtain the 

material properties of single-walled carbon nanotubes using perturbation technique. Ke et al. [56] 

incorporated the free vibration of SWCNT using Timoshenko beam theory and controlling 

equation of motion was derived using the Ritz-method. The thickness of SWCNT was governed 

by the rule of mixture with different support conditions. Some material researchers [57,58,59] 

assumed the straight and aligned SWCNT resting on elastic foundation with thermal 

environment. The effects of in-plane rigidity, temperature and volume fraction was calculated 

with sheets. Aragh et al. [60] investigated the vibration of CNT based on cylindrical shell panel 

using Eshelby-Mori-Tanaka approach. The volume fraction was considered in the direction of 

thickness and constitutive law was used to examine the vibration frequencies of SWCNTs. Żur 

[61] studied the abstract analysis of plates for free and non- axisymmetric vibration with ring 

supports using classical theory. The quasi- Green function was used for the solution of boundary 

value problem using different boundary conditions. Rafiee et al. [62] applied the Euler-Bernoulli 

beam theory with the conjunction of Kármán geometric theory. Wattanasakulpong and 

Ungbhakorn [63] employed shear deformation to calculate bending and vibration characteristics 

of CNT resting on Pasternak foundation. With the help of mixture rule, the SWCNTs are mixed 

with polymeric matrix. Shahsavari et al. [64] used Galerkin’s method to calculate the free 

vibration of porous plates placed on elastic foundations. A novel hyperbolic theory of quasi-3D 

was used for the porosity distribution and patterns. Murmu and Adhikari [65] studied non-local 

effect of rotating structure for practical development using non-local Euler theory. For 

undergoing motion with the molecular hub, the carbon nanotube is assumed to be attached.   

    Vibration of rotating isotropic CNT is very rare. Some researchers used first time to 

investigate the rotating vibration of Shells [See Refs.66,67,68,69,70]. Moreover, the behavior of 

vibrating isotropic CNT has been studied in recent years [71,72,73]. As far as the author’s 

knowledge goes, vibrational behavior of rotating isotropic CNT using Galerkin’s method has not 

been investigated/assumed. 
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    In addition, for the vibration of CNTs, many researchers have used different numerical 

techniques; for example modified coupled theory [22], 3D-nonlocal theory [36,37,64] 

differential quadrature method [23,41], wave propagation approach [42,44,45] finite element 

method [24] classical theory [34], deformation and shear deformation theory [38,43] ,nonlocal 

theory [39,40], quasi-Green’s function [46,61] and other techniques [41,49,50,53,54]. For 

example, CNTs can be modeled as one dimensional Euler-Bernoulli beams [34,36,37]. More 

refined continuum mechanics solutions especially at high frequencies was obtained via 

Timoshenko beam model (TBM) and other theories [18,38,43,56], which includes shear and 

rotary inertia of the beam. It is necessary to employ TBM to  capture the rotary inertia effects 

and shear deformation and provide accurate prediction for smaller length-to-diameter ratio of 

CNT, but have several computational problems are detected due to its conceptual simplicity. The 

TBM cannot capture the cross-sectional deformation of CNTs and, mathematically, TBM only 

provides a limit of large number of modes and frequency production.  

       The proposed method is a better and popular tool to investigate the overall vibration of 

SWCNTs. Vibration characteristics of single- and double-walled CNTs were conducted using 

flexible shell model [9,12,13,25,21]. Hussain et al. [42] and Hussain and Naeem [44,45] has used 

cylindrical shell model using wave propagation in SWCNTs to establish the new innovative 

techniques. Moreover, a new novel theoretical model gives innovative computational results for 

the vibration of CNTs, than earlier models [13,22,24,25,37,38,53,54,61,75-78]  

In present work, we analyze the vibrations of isotropic rotating single-walled carbon nanotube 

(SWCNTs) with ring supports using Love shell theory based on Galerkin’s method, which is our 

particular motivation. Since there is no evidence in the literature regarding present model where 

such problem have been studied. Two forms of SWCNTs, viz zigzag and chiral are considered 

for their vibration characteristics using with ring supports versus different parameters and 

boundary conditions. This is also our motivation for carrying out the present work. 

The main objective of present work is used to investigate the fundamental frequency of rotating 

isotropic SWCNTs with ring supports under polynomial volume fraction law with clamped-

clamped and clamped-free boundary conditions. In our case, the Galerkin’s method is applied to 

solve the presented tube dynamics equations and we have formulated the tube frequency 

equation in the eigenvalue form. This proposed model are quite straight forward for the 

vibrational analysis of these structures of SWCNTs. Effects of different parameters on 
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fundamental natural frequencies versus ratios of length- and height-to-radius and angular speed 

are investigated. It is found that on increasing the ratio of length-to-radius, the resulting 

frequencies decreases and with the increase of height-to-radius ratio the frequencies increases. It 

has been shown that on enhancing angular speed, both backward and forward waves increases 

and decreases respectively. It is also found that on enhancing the position of ring supports, the 

frequency curves increase in the start and at the mid are higher and at the last the frequencies are 

same as the frequencies was observed in the start of attached ring supports. Frequency value of 

C-C end condition is higher than those of C-F computations. It is investigated that the 

frequencies of zigzag (5, 0) are lower than those of FNFs of (9, 0) and it is found that frequency 

outcomes of chiral (9, 5), are higher than those of (6, 4). Subsequently, the validation study has 

been performed through the available published literature. The results of single-walled carbon 

nanotube have been computed by using MATLAB software. To discretize the governing 

equations of present model into frequency equations of SWCNTs, Galerkin’s method is used.  

2. Polynomial volume fraction law  

    In carbon nanotubes (CNTs), the constitutes material for modeling can be done with various 

function of distribution, is termed as mixture rule. The mathematical modeling of CNTs, power 

law function of along thickness direction has been used and the various properties such as 

coefficient of thermal conductivity and expansion of the CNTs and ceramic material (AL203). 

The variation in temperature and properties has been gained using volume fraction and 

temperature.  In accordance of power law in the thickness direction, the fraction volume changes 

as [24]. Upon evaluation of the total volume fraction of CNTs 
tcntV across the tube thickness, it is 

revealed that all types have the same total volume fraction of CNTs, that is, 

1
=

2

q

cnt tcnt

z
V V

h

 
 

 
                                                                              (1) 

3. Theoretical formulations 

Rolling one time the graphene sheet becomes SWCNTs which look like a cylinder as shown in 

Figure 1. It is assumed that vibration produced on rotating CNT and this rotating tube length L, 
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height h, and radius R, which are treated as geometrical parameters. The geometrical 

representation of these parameters are shown in Figure 2. 

The resultant and moment forces of rotating CNT are expressed as:  

   
2

2

, , , ,

h

xx x xx x

h

N N N dz     


  ,        
2

2

, , , ,

h

xx x xx x

h

M M M zdz     


                     (2)        

The stress components  
xx  (axial direction) and 

 (tangential direction) and the stress vector 

 x  
in the x𝜃-plane. 

From Eq. (9), the elements of stress vector with the help of Hook’s law can be elaborated as 

11 12

12 22

66

0

0

0 0

xx xx

x x

Q Q e

Q Q e

Q e

 

 







     
    

    
         

                                                                                      (3) 

Similarly the strain components (
xxe , e ) in  x- and θ-directions whereas shear stress (

xe )  in 

the x 𝜃-plane. 

The following form is for the strain energy ( ) of vibrating CNT 

 
2

0 0

1
[ ] [ ]

2

L

T Rd dx



                                                                                             (4) 

where 

                    
 11 22 12 11 22 12[ ] , , , , ,2T e e e                                                                                  (5)  

By utilizing the above matrices, the full form of     is described as: 
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11 12 11 12

12 22 12 22

66 66

11 12 11 12

12 22 12 22

66 66

0 0

0 0

0 0 0 0
[ ]

0 0

0 0

0 0 0 0

A A B B

A A B B

A B

B B D D

B B D D

B D

 
 
 
 

   
 
 
 
  

                                                                  (6)

 

The membrane, coupling, flexural rigidity are termed as ( )ijA , ( )ijB and ( )ijD , respectively.

 

/2

2

/2

[ , , ] [1, , ] ,

h

ij ij ij ij

h

A B D Q z z dz


 
                                                                            

(7) 

For heterogeneous, the coupling stiffness
ijB ’s, coupling stiffness eliminated for isotropic CNT. 

For laminated (isotropic) material, the reduced rigidity 
ijQ with conjunction of Young’s modulus 

and Poisson’s ratio can be described as: 

11 222
,

1

E
Q Q

v
 


12 2

,
1

vE
Q

v


 66
2(1 )

E
Q

v



                                               (8)

                                                            

 

The parameter ( E ,  , 
66Q ) used in Eq. (15) stands as Young’s modulus, Poisson’s ratio and 

shear modulus, respectively. A new theory is developed [18] with modification of Love’s theory 

[17].  

With the help of Love’s theory17, the linear combination of strain vector in Eq. (2) can be written 

as: 

11 11xxe e z  , 
22 22e e z   ,  

12 122xe e z                                                    (9)  

whereas (
11 , 

22 , 
12 ) and (

11e , 
22e , 

12e ) are referenced as surface curvatures and surface 

strains.  

The interlinked relation of displacement functions (strain and curvature) is indicated as: 

                          

 11 22 12

1 1
, ,e , ,

u v v u
e e w

x R x R 

       
             
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 
2 2 2

11 22 12 2 2 2

1 1
, , , ,

w w v w v

x R R x x
  

  

        
         

                                     

(10) 

The new form of strain energy is obtained after substituting Eqs. (5), (6) in Eq. (4).

 
2

2 2 2

11 11 22 22 12 11 22 66 12 11 11 11 12 11 22 12 22 11

0 0

2 2 2

22 22 22 66 12 12 11 11 22 22 12 11 22 66 12

2 2 2 21

2
2 4 2 4

L

A e A e A e e A e B e B e B e
Rd dx

B e B e D D D D



  


      

 
      

   
       

  (11) 

The kinetic energy (K.E) of rotating tube is articulated as: 

     

2 2 22

0 0

1
( )           

2

L

t

u v w
R w v R d dx

t t t



 
        

            
         

                                   (12) 

The mass density per unit length
t  is expressed as: 

2

2

h

t

h

dz 


                                                                                                                         (13) 

where  designates the mass density. 

The Lagrange energy functional ( ) is expressed as the difference of strain and kinetic energies. 

                                                                                                                     (14) 

After putting Eqs. (11 & 12) into Eq. (14) and by applying the Hamiltonian principle [50] to the 

Lagrange energy functional. 

For executing the vibration of rotating CNTs, a set of partial PDEs containing displacement 

functions is developed as: 

2 2
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2 2 2

1 1 1
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R
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2 2 2 2
2
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 

  

       
       
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2 2 2 2 2 2 2
2
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w
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   
 

   
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          

         

(15) 
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Utilizing the differential operator notations, Equation (15) forms a system of PDEs and these are 

calculated as: 

2

11 12 13 2

2

21 22 23 2

2

31 32 33 2

   

 

t

t

t

d d d

d d d

w
d d

u
u v w

t

v
u v w

t

u v w
t

d








  




  




  

                                                                                 

(15) 

The mathematical expressions for these operators: 11 12 33   ., , ..,d d d  have been presented in 

Appendix 1. 

 

3. 1 Application of Galerkin’s method 

Several techniques [78,79,80] have been proposed to analyze the vibration of CNT, but here, 

Galerkin’s method to discretize the governing equation of motion. The coordinate system , ,x t

are designated for axial, circumferential and time variable and the following relations for 

displacement functions are stated as:     

 

 

     

   

m

, , ( ) cos( )

, ,  

, , ( ) ( )  

m

m

u x t U x n t

v x t V x sin n t

w x t W x x a cos n t

   

   

   

 

 

  
                          (16)

 

Where three vibrational amplitude coefficients (
m ,

m ,
m )  and the deformation [u(x, θ, t), v(x, 

θ, t), w(x, θ, t)] denotes, respectively, the axial, circumferential and radial direction. Here the 

axial deformation [ ( )U x , ( )V x , ( )W x ]  respectively, in the longitudinal, tangential and transverse 

direction. Here m, n are represented, respectively, the circumferential wave numbers, axial half 

and ω denoted by angular frequency. The formula of frequency is 2f   . In the tube 

vibration, ( )x a treated as the impact of ring support and in this factor x  designates axial 

variable and a is position of the ring support. We obtain following relation after putting Equation 

(16) in Equation (15) and replacing the operator expressions with integrating  from 0x   to 

x L . 
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 The frequency matrix in the eigenvalue and polynomial form can be described after the 

arrangement of the above terms. 
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1 0 0 0 0 0

0 1 0 0 0 1 2 0                    

0 0 1 0 1 0

t

m

m

t m
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





        
        

           
        
        

   (18) 

 

 

or 

  2

1 2 3 0   L L L x   
                                                                                        (19)

 

Where the order of the matrix 
1 2 3, ,L L L  is three and the element of these matrices are presented 

in Appendix 2. Equation (19) be considered into standard eigenvalue problem w.r.t 

transformation [81]. 

 
 

2

3 2 1

0   
O I xI O

L L xO L
 



       
      

                                                                 (20)

 

Where the order of O and  I  is three and specified as  null and  unit matrices.  
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Using MATLAB, the frequency of the tube consists of six values and for the tube stability 

minimum value has been chosen.  

 

4. Results and discussions 

In this section, the obtained results for the different BCs likewise: C-C and C-F for zigzag and 

chiral SWCNTs are parametrically studied in this part using proposed technique by Equation 

(20). Results reported in this study are verified with earlier theoretical/simulation. Here, the 

influence of boundary conditions (C-C & C-F) for zigzag and chiral tubes are performed. 

According to Galerkin’s technique, the vibration frequencies have extended to wide range of 

parameters than earlier computations. In numerical simulation, the measurement of length-to-

diameter ratio provides satisfactory results than those are obtained experimentally and 

numerically [18] for SWCNTs and the model demonstrates the ability to estimate the vibration 

behavior of SWCNTs. The computations of our newly model with proposed approach with same 

data sets, our results are consistent with previous reports in MD [18] for SWCNTs. The 

following material parameters are as, the ratio of Young’s modulus and mass density, the in-

plane stiffness or rigidity, Poisson’s ratio E / ρ = 3.6481 × 108

 m
2/ s2, Eh = 278.25 GPa⋅nm, ν = 

0.2, respectively [18]. The range of poison’s ratio and thickness of the tube is adjusted from ν = 

0.14 ~ 0.34 and h = 0.0612 nm ~ 0.69 nm, respectively [42]and the diameter (d) of CNTs is 

considered as 6.86645×10−10 m. 

Firstly, Frequencies are presented for non-rotating case along with non-dimensional frequency 

parameters as: 2(1  ) /R E      shown in Tables 1 and 2 and good coherence is achieved. 

Tables 3 and 4 shows SWCNTs frequencies (THz) versus L/d. For the accuracy, the results are 

compared to the value estimated by wave propagation approach (WPA) [42] continuum model 

[19], (molecular dynamics) MD simulations [18], are given in Tables 3 and 4. The results are 

computed for wide range of L/d (= 4.68 ~13.89) with same parameters [18,19,42] The 

measurement of length-to-diameter ratio provides satisfactory results than those are obtained 

experimentally and numerically [18,19] and demonstrates the ability to estimate the vibration 

behavior of SWCNTs. The computations of our newly model with proposed approach and same 

data sets, our results are consistent with previous reports. The frequency difference is negligible 
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with the earlier computed results with different approaches. It is observed from two studies that 

molecular dynamic (MD) simulation have highest values than present results showing a 

frequency difference. Frequency spectra versus length/diameter ratio using Galerkin’s method is 

determined with C-C and C-F end condition, found a satisfactory agreement. The schematic 

sketch of applied boundary conditions is shown in Figure 3 and details are given in Ref. [44]. 

    The predicted current results are compared with the result predicted by Chen et al. [68] and 

percentage error is negligible in Table 5. The natural frequencies obtained using this formulation is 

in excellent agreement with other values reported in literature. The convergence shows that the 

present method is efficient and arising out of extensive mathematical manipulations and hence 

validating the formulation of rotating SWCNTs. 

4.1 Frequency of rotating CNTs without ring supports 

Firstly, rotating vibration frequency without ring supports of clamped-clamped CNTs are given 

in Tables 6–7, which denotes the frequency variation versus L/R and h/R for zigzag and chiral 

CNTs. During rotation, frequency waves bifurcate as backward and forward waves. When values 

of L/R enhanced, frequency decreases and become insignificant with parameter   =1rps q = 0.7, 

and h/R = 0.003, while on increasing h/R, frequency curves increases with specified parameter q 

= 0.7,   = 1rps, and L/R = 5. It is found that height-to-radius ratio is counter part of length-to-

radius ratio. Table 8 demonstrates the variation of angular speed  (rps) versus frequency. The 

frequencies of backward waves increases and forward wave decreases on enhancing the angular 

speed with parameter L/R = 5, h/R = 0.003 and q = 0.7. 

4.2  Frequency analysis of rotating CNTs with ring supports  

    In this section, we have obtained and discussed the variation of the vibrational frequency of 

length- and thickness-to-radius ratios under different nanotube boundary conditions. Moreover, 

the interpretation of lattice indices (m, n) can be formed as, for zigzag n = 0; and also chiral 

nanotubes as (m, n), for n ≠ m respectively. Here, vibration frequencies of zigzag (5, 0), (9, 0), 

and chiral (6, 4), (9, 5), SWCNTs, respectively have been performed using Galerkin’s technique. 

Figures 4–5 shows the natural frequencies (Hz) for the backward and forward waves of rotating 

CNTs by varying ratio of length-to-radius, L/R. The other parameter for rotating shell are taken 

as   = 1rps, q = 0.7, h/R = 0.003 and a  = 0.5. When the value of ratio L/R increases then 
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frequency decreases. The results for zigzag and chiral SWCNTs are investigated for ten 

computation with BCs (C-C and C-F) using Galerkin’s method. The computed backward 

(forward) frequencies at L/R = 1 ~ 10 of zigzag (5, 0), (9, 0) are obtained as [93.104 (92.731) ~ 

56.611 (56.242), 197.61 (197.4) ~ 190.48 (190.27)] for C-C conditions and [90.104 (90.031) ~ 

54.61 (54.242), 195.61 (195.4) ~ 187.48 (187.27)] for C-F conditions as shown in Fig-4. Now 

frequencies for chiral tube index (6, 4), (9, 5) with above defined L/R are as [1248.35 (1248.31) 

~ 163.61(163.16), 2088.89 (2088.67) ~239.46 (239.22)] and for C-F conditions [1148.35 

(1148.31) ~ 63.611 (63.162), 1588.89 (1588.67) ~ 98.461 (88.299)] shown in Figure 5. These 

figures show that on enhancing the ratio L/R, the frequencies for zigzag and chiral cases 

decreases very fast. It is observed that values of zigzag frequency with specified boundary 

conditions are less than that of chiral frequency outcomes. As it is noted that the deformation is 

not easy in the chiral and zigzag tube. Moreover, the cross sectional deformation of chiral is 

greater than the zigzag. Due to this the fundamental frequencies of zigzag are less than the chiral 

tubes frequencies. Obviously, the frequency peaks of C-C are greater than C-F curves of 

SWCNTs. 

    Figures 6 – 7 show the effect of frequency response of isotropic zigzag and chiral against ratio 

of thickness-to-radius with proposed boundary conditions and other referenced parameter are 

remained constant. The numerical traceable frequencies of backward (forward) succeeding to h/R 

= 0.001 for end condition are C-C = (5, 0) f ~6.2815 (5.9142), (9, 0) f ~19.67 (19.461), (7, 6) f 

~79.589 (79.133), (11, 4) f ~131.99 (131.62),  and for end condition C-F = (5, 0) f ~3.2815 

(2.9142), (9, 0) f ~17.67 (17.461), (7, 6) f ~58.589 (58.133), (11, 4) f ~121.99 (121.62) 

respectively. The natural frequencies at h/R = 0.010 for C-C = (5, 0) f ~56.791 (56.424), (9, 0) f 

~191.19 (190.98), (6, 4) f ~88.653 (88.198), (9, 5) f ~150.59 (150.22),  and for end condition C-F 

= (5, 0) f ~53.791 (53.424), (9, 0) f ~189.19 (189.98),(6, 4) f ~67.653 (67.198), (9, 5) f ~140.59 

(140.22) as shown in Figures 6-7. From the above discussion, it can be perceived that on varying 

the h/R, the C-F frequencies (5, 0), (9, 0), (6, 4), (9, 5) are lower than that of C-C same indices. 

When h/R enhanced from 0.001 ~ 0.010 the frequency peaks are observed as pronounce and 

parallel. Vibration characteristics of rotating isotropic zigzag and chiral C-C and C-F SWCNT 

structure are performed in detail through current study. The fundamental frequencies of CNT 

versus rotating speed ( ) as shown in Figures 8–9. The convergence is achieved of the 

presented Galerkin’s technique results with the estimated values of Chen et al.68. Moreover, C-C 
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FNFs at Ω = 1, the backward (forward) waves are f ~[(5, 0), (9, 0)] 16.690 (16.521), 54.553 

(54.390) and f (Hz)~[(6, 4), (9, 5)] 46.657 (46.506), 65.869 (65.778) and backward (forward) C-

F FNFs are f ~[(5, 0), (9, 0)] 15.533 (15.411), 54.635 (54.445) and f (Hz)~[(6, 4), (9, 5)] 

45.657(45.506), 64.869 (64.778). The frequency of backward (forward) C-C FNFs at Ω = 9 are 

f (Hz)~[(5, 0), (9, 0)] 18.338(14.998), 57.321 (53.998) and f (Hz)~[(6, 4), (9, 5)] ), 

47.55(46.188), 66.935 (65.602) and backward (forward) C-F FNFs are f (Hz)~[(5, 0), (9, 0)] 

17.338(13.998), 56.321 (52.998) and f (Hz)~[(6, 4), (9, 5)] 46.55 (45.188), 65.935 (64.602).  

       Further, it is remarkable from Figures 8–9, that the isotropic rotating frequency curves of 

chiral SWCNTs are definitely greater than that of zigzag curves. For backward and forward 

waves, it can be seen that the frequency amplitudes of both types of SWCNTs remain same at   

= 0. The frequency curves of forward waves are slightly less than forward waves validating the 

earlier computation [12,78] The presented Galerkin’s technique for backward and forward waves 

of these tubes provides higher estimation definitely for whole range of . It is noted that from 

the figures on increasing the rotational speed, the backward waves monotonically increases and 

forward waves decreases, respectively for C-C and C-F. 

    Figures 10–11 presents the backward and forward frequencies (Hz) for two types of CNTs 

versus the positions of ring supports (a). The remaining referenced parameters are  = 1rps L/R 

= 5, h/R = 0.003 and  q = 0.7. The ring support is composed as (0 )a L  . The frequency 

results of backward (forward) for C-C at a = 0 are [f ~ (5, 0), (9, 5)] 414.74 (414.68),674.64 

(676.61)  and at 0.5a L [f ~ (9, 0), (9, 5)] 588.42 (588.21),900.1 (900.1) and a L [f ~ (8, 0), 

(9, 5)]414.74 (414.68),674.64 (676.61). The frequency outcomes of C-F backward (forward) at a 

= 0 are [f ~ (8, 0), (9, 5)] 366.74 (366.68),659.64 (659.61) and at 0.5a L [f ~ (8, 0), (9, 5)] 

540.42 (540.21),890.65 (890.45) and a L [f ~ (8, 0), (9, 5)] 366.74 (366.68),659.64 (659.61).  

On increasing the ring positions, the frequencies increases from a = 0 ~0.4 and attains maximum 

values at a = 0.5L and after a = 0.5L the frequencies decreases. The frequency has same value at 

ring position a = 0, 1. It is evident from the figures that when the values of a (0 )a L  increases 

then the natural frequencies also increases and 0.5a L , it reaches its peak value but for 

0.5L a L  , on increasing the value of a, it begins to decrease and rust itself as bell shape 

symmetric curve. The same trend is observed for the other zigzag and chiral indices. It is seen 
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that effect of ring support is highly prominent on the vibration of rotating isotropic CNTs. The 

frequency values enhance on locating the ring supports around the rotating CNTs.   

5. Conclusions 

      In this section, a comprehensive estimation regarding Love’s shell theory has been 

considered for vibrational behavior of the rotating isotropic SWCNTs with distinct parameters 

using Galerkin’s method. Vibration frequency spectra of various physical parameters such as 

length-to-radius ratios angular speed and height-to-radius ratios, have been obtained with the 

effects ring supports for the vibrational behavior of different zigzag and chiral SWCNTs. Also 

the effects of ring supports have been originally examined for these types of tubes. Due to 

rotation of the tube, the frequency curves bifurcate as backward and forward frequencies. It has 

been demonstrated that the fundamental natural frequencies (backward and forward) depend on 

the material parameters of the nanotube and the frequencies for two sorts of SWCNTs under C-C 

and C-F boundary conditions increase with the decrease of length-to-radius ratio. In addition, it 

was indicated that the natural frequencies of these tubes increases with the increase of height-to-

radius ratio. Throughout the computation from this model, the frequencies of C-C conditions are 

larger than C-F, due to constraints are applied at the end of the tube. It is also found that on 

enhancing the position of the ring supports, the frequency curves increase in the start and at the 

mid are higher and at the last the frequencies are same as the frequencies was observed in the 

start of attached ring supports. It is concluded that ring supports have great effect on the 

frequencies of zigzag and chiral tubes. The present  work  can be utilized for analyzing of the 

vibrations in carbon nanotube by considering different parameters, namely, Winkler and 

Pasternak foundations, geometrical imperfections, fluid conveying, thermal and electromagnetic 

effects. 
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a                            ring support 

E                           Young’s modulus 

E, ѵ, ρ                   material parameters 

f                            fundamental frequency 

h                   tube thickness 

L                   length of tube 

L/R  , h/R              ratio of length and thickness- 

                             to-radius  

m                          half- axial wave number 

n                    circumferential wave number 

q                           exponent of volume fraction 

R                  tube radius 

u(x, θ, t), v(x, θ, t) ,  

w(x, θ, t)                   deformed functions 

ρ                      density  

, ,m m m  
               vibration amplitude  

                                 coefficients    

Ω                              angular speed 

ѵ           Poisson’s ratio 

,b f 
                      backward and forward  

                                 frequency 

ω                              angular frequency 

θ                               circumferential coordinate                      
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Table 1. Comparison of SWCNT frequencies with Ref.[13]. 

L/R m  Method 
n  

1 2 3 4 

20 1 

Swaddiwudhipong  et 

al.[13] 
0.016101 0.00545 0.00504 0.008534 

Present 0.016103 0.00545 0.00505 0.008536 

0.25 1 

Swaddiwudhipong  et 

al.[13] 
0.95193 0.93446 0.90673 0.87076 

Present 0.95194 0.93446 0.90674 0.87078 

Table 2. Comparison of simply supported SWCNT natural frequencies with Ref.69. 

n  Method  
1 2 3 4 5 

2 

Ahmad and Naeem 

[69] 
2043.7 5635.3 8932.4 11407.4 13253.1 

Present 2046.4 5637.2 8933.4 11407.8 13253.0 

3 

Ahmad and 

Naeem[69] 
2195.05 4035.55 6614.63 9121.1 11358.9 

Present 2199.03 4041.30 6619.2 9124.1 11360.8 

 

Table 3. Comparison of mode (m, n) = (1, 1) C-C SWCNTs frequencies. 

 
Frequencies (THz) 

 

L/d Present WPA[42] 
MD 

Simulation[18] 

 Shell model 

[19]  

4.68 0.99714 1.23445 1.06812 1.1747  

6.67 0.54244 0.67832 0.64697 0.5909  

8.47 0.35204 0.44146 0.43335 0.4625  

10.26 0.24696 0.30922 0.30518 0.3494  

13.89 0.13814 0.17360 0.18311 0.1938  
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Table 4. Comparison of mode (m, n) = (1, 1) C-F SWCNTs frequencies. 

 
Frequencies (THz) 

 

L/d Present         WPA [23] 
             MD      

Simulation [18]  

4.67 0.13586               0.17074                   0.23193  

6.47 0.07197               0.09048                   0.12872  

7.55 0.05311               0.06678                   0.10000  

8.28 0.04426               0.05566 0.07935  

10.07 0.03004               0.03777 0.05493  

13.69 0.01631               0.02051 0.03052  

17.30 0.01023               0.01288 0.01831  

20.89 0.00702               0.00883 0.01381  

24.50 0.00510               0.00642 0.00916  

28.07 0.00389               0.00489 0.00690  

31.64 0.00306               0.00385 0.00610  

35.34 0.00245               0.00309 0.00458 

 

Table 5.  Rotating SWCNT nondimensional frequencies 
2, (1 ) /b f R E       with Ref.68. 

   

  

Method 
n  

2 3 4 5 6 

0.01 

b    

Chen et 

al.[68] 
0.00163 0.00444 0.00842 0.01459 0.01993 

Present 0.00155 0.00438 0.00840 0.01335 0.01992 

f  

Chen et 

al.[68] 
0.00162 0.00443 0.00841 0.01358 0.01993 

Present 0.00154 0.00437 0.00839 0.01358 0.01992 

( ,b f  ,  designates the frequency of  backward and forward frequency)         
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Table 6. Variations of natural frequencies (Hz) with L/R. 

Type (m, n) Method 
L/R 

1 2 3 4 5 

Zigzag (8, 0) 
backward 113.17   111.35 90.42 85.32 80.51 

forward 113.01   111.13 90.22 85.22 80.21 

Chiral (9, 5) 
backward 1201.12 812.71 544.18 513.76 504.45 

forward 1201.03 812.66 544.05 513.23 504.19 

 

Table 7. Variations of natural frequencies (Hz) with h/R. 

Type (m, n) Method 
h/R 

0.001 0.002 0.003 0.004 0.005 

Zigzag (8, 0) 
backward 

 21.44 22.04    22.69 22.98       23.52 

forward 
 21.33 21.92 22.48 22.76       23.41 

Chiral (9, 5) 
backward  101.01 104.118 108.452 114.682 116.28 

forward  100.87 104.109 108.432 114.639 116.18 

  

Table 8. Variations of natural frequencies (Hz) with .  

Type (m, n) Method 
  

0 1 2 3 4 

Zigzag (8, 0) 
backward   20.10 20.14 21.19 22.23  23.28 

forward   20.10  19.25 18.48 17.61  16.79 

Chiral (9, 5) 
backward 33.45 33.61 34.23 34.44 35.48 

forward 33.45 33.04 32.79 32.38 32.09 
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(a)                                                            (b) 

Figure 1. (a) Schematic labeling of Graphene sheet (b) Rolling SWCNTs 

 

 

Figure 2. Rotating FG-CNT with geometrical sketch. 
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(a) (b) 

Figure 3. Schema of boundary conditions (a) C-C (b) C-F. 
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Figure 4. Frequency variation with length-to-radius ratio for zigzag (5, 0), (9, 0) SWCNTs. 
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Figure 5. Frequency variation with length-to-radius ratio for chiral (6, 4), (9, 5) SWCNTs. 
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Figure 6. Frequency variation with height-to-radius ratio for zigzag (5, 0), (9, 0) SWCNTs. 
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Figure 7. Frequency variation with height-to-radius ratio for chiral (6, 4), (9, 5) SWCNTs. 
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Figure 8. Frequency variation with angular speed  for zigzag (5, 0), (9, 0) SWCNTs. 
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Figure 9.  Frequency variation with angular speed  for chiral (6, 4), (9, 5) SWCNTs. 

 

 

 

0 0.1L 0.2L 0.3L 0.4L 0.5L 0.6L 0.7L 0.8L 0.9L L
300

350

400

450

500

550

600

 C-C (5, 0): backward waves

 C-C (5, 0): forward waves

 C-F (5, 0): backward waves

 C-F (5, 0): forward waves

N
a

tu
ra

l 
fr

e
q

u
e

n
c
y
 (

H
z
)

positions of ring supports, a

 

0 0.1L 0.2L 0.3L 0.4L 0.5L 0.6L 0.7L 0.8L 0.9L L
350

400

450

500

550

600

 C-C (9, 0): backward waves

 C-C (9, 0): forward waves

 C-F (9, 0): backward waves

 C-F (9, 0): forward waves

N
a

tu
ra

l 
fr

e
q

u
e

n
c
y
 (

H
z
)

positions of ring supports, a

 



 

37 

0 0.1L 0.2L 0.3L 0.4L 0.5L 0.6L 0.7L 0.8L 0.9L L
350

400

450

500

550

600

650

700

 C-C (11, 0): backward waves

 C-C (11, 0): forward waves

 C-F (11, 0): backward waves

 C-F (11, 0): forward waves

N
a

tu
ra

l 
fr

e
q

u
e

n
c
y
 (

H
z
)

positions of ring supports, a

 

Figure 10. Frequency variation with ring 

supports of zigzag (5, 0), (9, 0), (11, 0). 
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Figure 11. Frequency variation with ring 

supports of chiral SWCNTs (6, 4), (9, 5), (11, 

4). 

 

 

 

 


	Cover
	Manuscript

