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Abstract20

In this work, a high-resolution Atomic Force Acoustic Microscopy imaging technique is shown in21

order to obtain the local indentation modulus at nanoscale using a model which gives a quantita-22

tive relationship between a set of contact resonance frequencies and indentation modulus through23

a white-noise excitation. This technique is based on white-noise excitation for system identifica-24
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tion due to non-linearities in the tip-sample interaction. During a conventional scanning, a Fast25

Fourier Transform is applied to the deflection signal which comes from the photo-diodes of the26

Atomic Force Microscopy (AFM) for each pixel, while the tip-sample interaction is excited by a27

white-noise signal. This approach allows the measurement of several vibrational modes in a sin-28

gle step with high frequency resolution, less computational data and at a faster speed than other29

similar techniques. This technique is referred to as Stochastic Atomic Force Acoustic Microscopy30

(S-AFAM), where the frequency shifts with respect to free resonance frequencies for an AFM can-31

tilever can be used to determine the mechanical properties of a material. S-AFAM is implemented32

and compared to a conventional technique (Resonance Tracking-Atomic Force Microscopy, RT-33

AFAM), where a graphite film over a glass substrate sample is analyzed. S-AFAM can be imple-34

mented in any AFM system due to its reduced instrumentation compared to conventional tech-35

niques.36

Keywords37

Atomic Force Microscopy; Fast Fourier Transform; Mechanical properties; System theory; White38

noise39

Introduction40

There are many methods to measure mechanical properties at nanoscale, some of them are based41

on either indentation or any other physical phenomena [1,2]. However, each method has its own42

limits due to instrumentation capabilities, contact geometries and so forth. Additionally, some43

of these methods can be destructive or can provide insufficient resolution as dimensions shrink44

further[1].45

Atomic Force Microscopy (AFM) has demonstrated to be a fundamental tool in nanotechnology46

science [3] since this offers a non-destructive alternative for measuring mechanical properties at47

nanoscale using the small size of the cantilever tip (radius∼5-50nm).48

Conventional AFM methods for mechanical properties measurement are based either on force-49

displacement curves or resonance frequencies [1]. Force-displacement works better when the stiff-50
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ness of the cantilever is comparable to that of the test material. This is suitable for soft materials51

loosing effectiveness as the material stiffness increases. On the other hand, the contact resonance52

method is ideal when the material stiffness is greater, where the cantilever vibration at or near its53

resonant frequencies is used. This is suitable for stiff materials such as ceramics or metals [1,4].54

The functionality can be found in the resonant vibrational modes of the cantilever when it is excited55

either by an external actuator or by an actuator attached to the AFM cantilever holder [1]. When56

the tip is out of contact with the sample, the resonance modes occur at a specific frequency that de-57

pends on the geometrical and material properties of the cantilever, on the other hand, when the tip58

is placed in contact, the resonance modes increase the frequencies due to tip-sample interaction. In59

this manner, the mechanical properties of the sample can be deduced from these frequency shifts60

and a suitable model [1,4-10].61

The methods which use the resonance frequencies are often labeled as acoustic or ultrasonic meth-62

ods due to frequency of the vibration involved (∼100kHz-3MHz) [1,8,11]. Among them are: ul-63

trasonic force microscopy (UFM) [12], heterodyne force microscopy [13], ultrasonic atomic force64

microscopy (UAFM), atomic force acoustic microscopy (AFAM) [1], bimodal AFM [14], reso-65

nance tracking-Atomic Force Microscopy (RT-AFAM) [6], band excitation [9], dual-frequency66

resonance-tracking atomic force microscopy [15], nanomechanical holography [2], G-mode [16],67

triple frequency atomic force microscopy[17] and so on. Even though these methods offer reali-68

able measurements, these can only measure one or three resonant vibrational modes with a rel-69

ative frequency resolution, and in some cases the involved instrumentation can be very complex70

[2,9,15,16,18] making the system excitation restricted to purely sinusoidal signals and to the lock-in71

time constant, which reduces the time response of the overall measurement when a lock-in ampli-72

fier is used [9,16,19].73

In this work, an AFM technique based on resonance frequency shifts is shown where the main ad-74

vantages of this technique are: requires a reduced instrumentation, offers higher frequency reso-75

lution at different resonant vibrational modes, obtains more than one vibrational mode in a single76

step and gives indentation modulus mappings. These tasks are possible when system theory [20]77
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is taken into account, specifically the identification system problem [21]. Here, a mathematical78

model, which describes the free/contact cantilever resonance frequencies, is obtained when the tip-79

sample interaction is perturbed by a stochastic signal. For this reason, the technique is referred to80

as Stochastic-Atomic Force Acoustic Microscopy (S-AFAM).81

S-AFAM works as follows: While the commercial AFM is scanning on contact mode convention-82

ally, the tip-sample interaction is excited by a white-noise signal generated by a function waveform83

generator equipment through a piezoelectrical actuator below the tip-sample. At the same time, a84

Fast Fourier Transform (FFT) is computed to the deflection signal from photo-diodes by data ac-85

quisition equipment for each pixel of the sample, where each FFT spectrum is stored in a hard-disk.86

This way of measurement does not use a lock-in amplifier which reduces the time response of the87

overall measurement and enhances the frequency window for analysis. At the end of the scanning,88

all the acquired FFT spectra make a 128×128-pixel mapping, where the detection of frequency89

shifts is recorded with a resolution of 153.8 Hz. Then, an off-line process is carried out using a90

program routine on Matlab™which is based on a mathematical model that relates the contact res-91

onance frequencies with an indentation modulus value when a white-noise excitation is taken into92

account. This model is based on the Power Spectral Density (PSD), Harmonic Oscillator Model.93

At the end of the process, an indentation modulus mapping is obtained through this methodology.94

This paper is organized as follows. First of all, the prototype is described with further details in-95

cluding the acquisition data process in the Materials and methods section. In the next section, the96

mathematical background is described in Experimental details where the Power Spectral Density is97

described for a free cantilever and a contact cantilever, both cases excited by white-noise signal. In98

the Results and discussion section the obtained images using S-AFAM are shown, explained within99

further detail and compared to RT-AFAM. Finally, we end with some conclusions about the capa-100

bilities of the proposed technique.101
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Materials and methods102

S-AFAM takes an optimal instrumentation, which is plugged in to a commercial AFM equipment,103

see Figure 1. The instrumentation consists of:104

• A SPM, Bruker / Veeco / Digital Instruments Nanoscope IV Dimension 3100 equip-105

ment is used, this was upgraded with a closed-loop x-y nanopositioning stage (nPoint, Inc.106

NPXY100), a signal access module (SAM) accessory which was used for signal input/output107

to the AFM, and supported on a floating air table and equipped with an acoustical isolation108

chamber which minimizes the external thermal and vibrational disturbances, respectively.109

• Data acquisition and FFT processing were carried out using NI PXIe-1073 equipment, which110

includes a NI 7961R FPGA, NI 5762 digitizer at 200MS/s/ch, and PXI 6363DAQ from Na-111

tional Instruments™.112

• White-noise signal is generated by a function waveform generator HP/Agilent 33120A.113

• BudgetSensors™diamond-coated silicon probes, 450 µm long with a 0.2 Nm−1 spring con-114

stant were used.115

• All experiments were carried out in dry air at a temperature of 21.0±0.1◦C and humidity of116

2% ± 1 %.117

It is very important to define the appropiate signal in order to make the entire system perturbed,118

this allows to have enough information about the system dynamics. For this work, a stochastic sig-119

nal is used for the tip-sample excitation because it can extract all the system dynamics, i.e. persis-120

tent excitation in the system theory field [22,23].121

The proposed technique works when a FFT is computed by NI PXIe-1073 equipment taking into122

account the deflection signal from photo-diodes for a specific point from the sample to be measured123

during a conventional scanning of 128×128-pixel in an AFM. Here, while a system is executing124

this task, HP/Agilent 33120A is exciting the tip-sample through an external piezoelectric actua-125

tor below the sample using a white-noise signal. White-noise approximation is used for this pur-126
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Figure 1: Experimental setup for S-AFAM, using a NI PXIe-1073 equipment and a function wave-
form generator HP/Agilent 33120A.

pose because it can excite the tip-sample system using a 10MHz flat-bandwidth signal generated by127

HP/Agilent 33120A equipment [20-24].128

Once the FFT spectra have been obtained in a 128×128-pixel mapping, it is saved in a hard-disk129

for off-line processing. Each pixel has a FFT spectrum, where they each have at least four reso-130

nance frequencies, see Figure 2. An off-line processing is computed for each resonance frequency131

taking into account a simple Harmonic Oscillator Model fitting. Finally, the FFT spectra mapping132

is transformed into an indentation modulus mapping using a mathematical model based on the133

reduced elasticity modulus and PSD model, where the latter is used due to it is the ideal tool for134

stochastic process in frequency domain[25].135

This way of enhancement allows the measurement of several resonance frequencies where other136

conventional techniques do not in one single step and without a lock-in amplifier. To show the ca-137

pabilities of this technique, a graphite film was deposited on a glass substrate using a sputtering138

technique, which was characterized by the conventional method RT-AFAM [6] and by the proposed139

technique, S-AFAM.140
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Figure 2: Contact resonance frequencies for a graphite film over glass corning. a) Resonance flex-
ural modes acquired using S-AFAM, b) Resonance flexural modes acquired using a lock-in.

Experimental details141

Dynamic model142

It is important to have a mathematical model in order to determine that the tip-sample interaction143

excited by white-noise can extract the resonance frecuencies for a free/contact cantilever. For this144

objective, the model by Vazquez et al. [26-28] was taken into account, and then used into a PSD145

model to make a transformation from resonance frequency to indentation modulus. This kind of146

model is necessary since the white-noise signal belongs to the power signals set. In other words,147

these signals offer infinite energy[24,25].148

For this work, the tip-sample interaction must be studied as a system[20,22], see Figure 3. The in-149

put of the system is considered as the excitation signal through a piezoelectrical actuator, which can150

be controlled in amplitude and frequency domain, and the output of the system is considered as the151

deflection signal from the photo-diodes of the AFM.152

In this manner, the classical Euler-Bernoulli beam equation is used, which is expressed by Vazquez153
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Figure 3: AFM system, piezoelectrical signal excitation is considered as the input, while the de-
flection signal from the photo-diodes is considered as the output.

et al. as [26-28]154

EI
∂4z(x, t)

∂x4
+ c

∂z(x, t)

∂t
+m

∂2z(x, t)

∂t2
= −u(t), (1)155

where EI is the flexural stiffness, c corresponds to the damping due to viscous friction,m to the156

mass per unit length and z(x, t) is the deflection of the cantilever defined for a displacement toward157

the sample, t is time, x ∈ [0, L], u(t) is a uniform force per unit length acting along the cantilever158

and L is the length of the cantilever, respectively. The boundary conditions at the fixed end are159

z(x, t)
∣∣∣
x=0

= 0,160

∂z(x, t)

∂x

∣∣∣
x=0

= 0, (2)161
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and at the tip end are162

∂2z(x, t)

∂x2

∣∣∣
x=L

= 0,163

EI
∂3z(x, t)

∂x3

∣∣∣
x=L

+ f(t) = −q(t), (3)164

where q(t) is the input force acting perpendicular to the cantilever and f(t) is the interaction force165

between the cantilever and the surface expressed by Derjaguin-Muller-Toporov (DMT) model [1] as166

f(t) = −HR
6a20

+
4

3
E∗
√
R(zs − z(x, t) + a0)

3/2, (4)167

where H is Hamaker constant, R is the tip radius, E∗ is the reduced elastic modulus between the168

tip and the sample, a0 is the interatomic distance and zs is considered as the distance from the sam-169

ple to the tip of the undeflected cantilever, which is described by the force f(t) linearized around a170

z0 point as171

f(t) = − ∂f(t)

∂z(L, t)

∣∣∣
z0

= −2E∗
√
R(zs − z0 + a0), (5)172

in this equation kts = −(∂f(t)/∂z(L, t))|z0 represents the contact stiffness. Then, the linearized173

model around z0 according to Equation 3 is174

EI

(
∂3z(x, t)

∂x3

∣∣∣
x=L
− k̂ts

3L3
z(x, t)

)
= −q(t), (6)175

where176

kts =
3EI

L3
k̂ts. (7)177

Using the boundary conditions, the Laplace transform is applied to Equation 1, the cantilever de-178
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flection is described by179

Z(x, s) = cosh(λ(s)x) [A1cos(λ(s)x) + A2sin(λ(s)x)] +180

sinh(λ(s)x) [A3cos(λ(s)x) + A4sin(λ(s)x)] +181

U(s)

4EIλ(s)4
, (8)182

where183

λ(s) =
4

√
cs+ms2

4EI
, (9)184

and the constants A1, A2, A3 and A4 can be found using boundary conditions.185

Free cantilever transfer function186

For the free cantilever response excited by white-noise, Equation 8 has to be considered as a trans-187

fer function for a PSD treatment. This transfer function describes the relationship between the188

piezoelectric actuator excitation and the free cantilever deflection according to the system described189

in Figure 3, this is expressed using some equalities [29] as follows190

Zfree(x, s)

U(s)
=
−4L3

∏∞
n=1

[
1− λ4L4

n4
n

]
24EI

∏∞
n=1

[
1 + λ4L4

d4n

] , (10)191

where nn and dn are the n-th roots of192

tan(nn) = tanh(nn) | nn > 0,193

cos(dn)cosh(dn) = −1 | dn > 0,194

respectively.195
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Thus, Equation 10 is expanded using Equation 9 as196

Z(x, s)

U(s)
=

(
−4L3

3EI

)∏∞n=1

(
−mL4

4n4
n
s2 − c

4n4
n
s+ EI

L4

)
∏∞

n=1

(
m
d4n
s2 + c

d4n
s+ EI

L4

)
 , (11)197

Now, PSD has to be computed from Equation 11 since the system is excited by a stochastic sig-198

nal [24,25]. For this work, the signal excitation to be considered is white-noise signal because it199

features an infinite flat-bandwidth. White-noise is defined as a scalar second-order discrete-time200

stochastic process for voltage generated by the function waveform generator, V(−∞,∞), and its prop-201

erties are202

η(k) = E{Vk} = 0, for all k, −∞ < k <∞,203

R(k, k + l) = E{VkVk+l} = rδ(k) for all −∞ < k, l <∞.204

where r ≥ 0, mean E{Vk} is the expected value of the random variable V (k), the autocorrelation205

E{VkVk+l} is the expected value of the product VkVk+l, and δ(k) is Dirac delta function [24,25,30].206

Then, a PSD must be calculated for each pole and zero. The PSD for a pole is calculated taking207

into account a n-th pole from Equation 11 as208

GPn−free(s) =
d4n
m

s2 + c
m
s+ EId4n

mL4

,209

which can be transformed into matrix form [20] for sake clarity as210

 ẋ1

ẋ2

 =

 0 1

−EId4n
mL4 − c

m


 x1

x2

+

 0

1

 q,211

y1 =

[
d4n
m

0

] x1

x2

+ [0]q, (12)212
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where ẋ1 is the cantilever deflection, ẋ2 is the derivative for cantilever deflection and q is the same213

input force described in Equation 3.214

The PSD model [24] for a second order system is215

Gyy(ω) = C(−jωI −A)−1BGωω(ω)B
T (jωI −A)−TCT , (13)216

where ω is the frequency,217

A =

 0 1

−EId4n
mL4 − c

m

 , B =

 0

1

 , C =

[
d4n
m

0

]
, (14)218

λ̄ = −jω as the complex conjugate of λ, the white-noise power is219

E [ω(t)ω(τ)] = V δ(t− τ), BGωω(ω)BT =

 0 0

0 V

 , (15)220

and V is the voltage amplitude for white-noise signal produced by the function waveform generator.221

Thus, the Equation 13 for n-th pole becomes222

GPyy−free(ω) =
Qd8n
m2(

ω2 − EId4n
mL4

)2
+ c2

m2ω2

. (16)223

Now, the PSD for a n-th zero is calculated taking into account Equation 11 as224

GZn−free(s) =

−m
4n4

n

s2 − c
m
s− 4EIn4

n

mL4

,225
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which can be transformed into matrix form for sake clarity as226

 ẋ2

ẋ3

 =

 0 1

4EIn4
n

mL4 − c
m


 x3

x4

+

 0

1

 q,227

y2 =

[
−m
4n4

n
0

] x3

x4

+ [0]q, (17)228

where ẋ3 is white-noise, ẋ4 is the derivative for white-noise.229

Using the same formula described in Equation 13 for PSD, and the next equalities230

A
′
=

 0 1

4EIn4
n

mL4 − c
m

 , B′
=

 0

1

 , C ′
=

[
−m
4n4

n
0

]
, (18)231

λ̄ = −jω as the complex conjugate of λ, and the white-noise power described in Equation 15. The232

PSD for a n-th zero becomes233

GZyy−free(ω) =

Qm2

16n8
n(

ω2 + 4EIn4
n

mL4

)2
+ c2

m2ω2

. (19)234

Finally, taking into account Equation 16 and Equation 19, the PSD for Equation 10 when it is ex-235

cited by white-noise is236

Gfree(ω) =
−4L3

3EI

∏∞
n=1

(
ω2+

4EIn4
n

mL4

)2

+ c2

m2 ω
2

Qm2

16n8
n


∏∞

n=1

 Qd8n
m2(

ω2−EId4n
mL4

)2

+ c2

m2 ω
2

 , (20)237

this Equation could possibly be obtained since the model was linearized. For this reason, the PSD238

can be calculated for each pole and zero independently in the frequency domain [20,25,31], and239

then used altogether for the free cantilever transfer function , Equation 11.240
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Contact cantilever transfer function241

The transfer function for a contact cantilever is defined from Equation 8 as242

Zcont(x, s)

U(s)
=

8L3

3

∏∞
n=1

[
1 + 4λ4L4

n4
n

]
8EI(1 + k̂ts)

∏∞
n=1

[
1 + 4λ4L4

d4n

] , (21)243

where k̂ts > −1, nn and dn are the nth-roots of244

tan(nn) = tanh(nn) | nn > 0,245

3k̂ts
d3n

[sinh(dn)cos(dn)− cosh(dn)sin(dn] = 1 + cos(dn)cosh(dn) | dn > 0,246

respectively.247

And now, using the same methodology as the last section to obtain the transfer function for a free248

cantilever excited by white-noise, the PSD for a contact cantilever is carried out. From Equation 21249

the n-th pole is described by250

GPn−cont(s) = 8EI(1 + k̂ts)

[
1 +

4λ4L4

d4n

]
, (22)251

using Equation 13, the PSD for a n-th pole is calculated as252

GPyy−cont(w) =

Qd8n
64(1+k̂ts)2L8m2(

ω2 − EId4n
mL4

)2
+ c2

m2ω2

, (23)253

and also from Equation 21 the n-th zero is described by254

GZn−cont =
8L3

3

[
1 +

4λ4L4

n4
n

]
, (24)255
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using Equation 13, the PSD for a n-th zero is calculated as256

GZyy−cont(w) =

(
ω2 − EIn4

n

mL4

)2
+ c2

m2ω
2

9QE2I2n8
n

m2L8

. (25)257

Finally, using Equation 23 and Equation 25, the PSD for contact cantilever is calculated for Equa-258

tion 21 as259

Gcont(ω) =

∏∞
n=1

(
ω2−EIn4

n
mL4

)2

+ c2

m2 ω
2

9QE2I2n8
n

m2L8


∏∞

n=1

 Qd8n
64(1+k̂ts)

2L8m2(
ω2−EId4n

mL4

)2

+ c2

m2 ω
2

 . (26)260

Results and Discussion261

Other similar works in literature give an indentation modulus for each resonance frequency mak-262

ing a sample to have more than one value for indentation modulus. In this work, Equation 20 and263

Equation 26 are useful because it gives a quantitative relationship between a set of resonance fre-264

quencies and a unique indentation modulus through a white-noise excitation. To see the validation265

of this model, some simulations and measurements are presented.266

Equation 20 and Equation 26 are simulated with the following numerical data extracted from [27]:267

E = 169.7GPa, I = 3.64× 10−22m4, c = 1× 10−18kg/ms andm = 4.08× 10−7kg/m. For the free268

cantilever case, the simulation is shown in Figure 4(a). In this figure, a difference in resonance fre-269

quencies can be seen between a cantilever with L = 300µm and another one with L = 500µm, i.e.270

when the cantilever is shorter, the resonance frequencies increase. Using these computed free reso-271

nance frequencies, the geometry for a real cantilever can be known if a suitable program routine is272

used to search for the best cantilever fitted to these frequencies.273

For the contact cantilever case, the simulation is shown for three cantilevers with a contact stiffness274

of 10N/m: L = 300µm, L = 400µm and L = 500µm, see Figure 4(b). The behavior for resonance275

frequencies is similar to free cantilever, i.e. when the cantilever is shorter, the resonance frequen-276
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cies increase. This result indicates that the length of the cantilever must be taken into account for277

the sensitivity, where the range of frequencies depends on the local mechanical properties of the278

sample.279

When a contact cantilever with L = 400µm is taken into account and only its contact stiffness is280

changed, it can be seen how the resonance frequencies increase as the contact stiffness does too.281

Three simulations are shown for contact stiffness k̂ts: 1N/m, 10N/m and 100N/m, see Figure 4(c).282

These simulations show that it is possible to have a quantitative relationship between a set of reso-283

nance frequencies and an indentation modulus value.284

Figure 4: PSD simulation. a) Free cantilever:L = 300µm(blue line), L = 400µm(dashed red
line) and L = 500µm(dotted yellow line), b) Contact cantilever: L = 300µm(blue line), L =
400µm(dashed red line) and L = 500µm(dotted yellow line), c) Contact cantilever for L = 400µm:
k̂ts = 1N/m(blue line), k̂ts = 10N/m(dashed red line), k̂ts = 100N/m(dotted yellow line).
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Now, the simulated results bring the enough support for an experiment in order to show the capa-285

bilities of this technique. First, the geometrical parameters for the experimental cantilever must286

be known since the resonance frequency transformation into indentation modulus requires these287

values. For this purpose, a resonance frequency spectrum was acquired for free cantilever using288

white-noise as excitation signal and the FFT algorithm. These resonance frequencies were fitted289

according to a database which was computed using the free cantilever model described in Equation290

20, and particle swarm optimization algorithm[32-35] in order to obtain the geometrical param-291

eters for the experimental cantilever. The database describes each cantilever according to: length292

L, width a, thickness b, inertia moment I = ab3/12, linear massm = ρA, where A is the cross-293

section area of the cantilever and ρ = 2330kg/m3 [36] is the density of the cantilever. The database294

has 10000 cantilevers where L ∈ [440, 500]µm, a ∈ [40, 50]µm, b ∈ [1, 3]µm.295

The optimization criteria is296

J = erms =

√√√√ 1

N

N∑
n=1

(
fn − f̂n

)2
, (27)297

where erms is root mean square error, fn is the n-th measured free resonance frequency, and f̂n is298

the n-th theoretical free resonance frequency. For this work, using this optimization algorithm, the299

best cantilever results with the following dimensions: L = 460µm, a = 58µm, b = 1.8µm.300

The free resonance frequencies for the fitted experimental cantilever are compared with the exper-301

imental ones and with those obtained by using Finite Element Process (FEA) [36], see Table 1.302

There is an average error of 3.496% between the experimental frequencies and those obtained by303

using the proposed model, meanwhile there is a higher average error of approximately 5.652% be-304

tween the experimental frequencies and those obtained by using FEA. Although, there is an almost305

homogeneous error of 4% using the proposed model, it can provide a good approximation about306

the cantilever geometry using white-noise as an excitation signal. This result reinforces S-AFAM307

as a technique for the measurement of mechanical properties.308

Also, the klever was calculated and compared with the fitted experimental cantilever used in this309
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Table 1: Modeled versus observed dynamic behavior for an AFM free cantilever.

Mode Experiment
(kHz)

FEA
(kHz)

Error
(%)

Model
(kHz)

Error
(%)

1 70.102 58.274 16.872 73.490 4.832
2 204.530 198.220 3.085 205.800 0.620
3 386.384 383.350 0.785 403.300 4.378
4 639.992 651.950 1.868 666.600 4.157

experiment, the comparison can be seen in Table 2. The first value was obtained from the manufac-310

turer data, while the second value was obtained using the method by Sader[19], and the third value311

was obtained using klever = 3EI
L3 , where the geometrical values were taken from the fitting process.312

It is important to notice that there is a good agreement between the Sader method and the proposed313

model which makes S-AFAM a reliable method.314

Table 2: Modeled versus other methods for klever.

Manufacturer
klever
(N/m)

Sader method
klever
(N/m)

Model
klever
(N/m)

0.2 0.179±6.91% 0.1474±3.49%

Then, a conventional AFM mapping for a graphite film over a glass substrate was carried out us-315

ing a white-noise signal as excitation for tip-sample interaction. During this task, each pixel has a316

FFT computed and stored in a hard-disk. The Figure 4(c) shows that the contact stiffness can be317

obtained from these contact resonance frequencies, where it is important to notice that a set of res-318

onance frequencies can provide an unique value for contact stiffness according to Equation 26. For319

this purpose, a mapping transformation from resonance frequencies to contact stiffness was ob-320

tained using a database for 8000 values for contact stiffness from 0.5N/m to 4000N/m with a step321

of 0.5N/m using the geometrical values for the cantilever obtained from the fitting process, see Fig-322

ure 5.323

A conventional AFM topography image is shown in Figure 6(a) where each material is indicated by324

a label, the graphite film was made using sputtering technique with 7nm of thickness. Even though325
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Figure 5: Contact stiffness versus flexural resonance frequencies using a cantilever with geometri-
cal parameters: L = 460µm, a = 58µm, b = 1.8µm.

the sample has two materials, it is very to difficult to see a difference using conventional AFM mea-326

surement. For this reason, a conventional AFM technique based on contact resonance was used, in327

this case RT-AFAM [6], where the sample must show two resonance zones: one for glass and the328

other one for graphite, respectively. Figure 6(b) shows a RT-AFAM image where the two materials329

can be appreciated, but the difference between the materials is not enough.330

Now, S-AFAM was used to obtain images with higher resolution frequency, making the difference331

between graphite and glass visible, see Figure 6(c), (d), (e) and (f). When the frequency window332

goes higher, not only an a higher difference is appreciated between two materials, but some details333

can also be seen, which are attributed to the aggregates and imperfections of the deposition tech-334

nique between the glass substrate and the same material deposited on it. In Figure 6(d), one kind335

of these details is appreciated in the left-bottom zone where the resonance frequency contribution336

is higher for glass than graphite, which could be explained if the contact deposition was deposited337

with some imperfections. The maximum difference between two materials is shown in Figure 6(d)338

and (e) where the resonance frequency peaks are greater than in any other image. It is important339

to notice that Figures 6(c), (d), (e) and (f) were acquired during approximately 3 hours using S-340

AFAM, while the same result using RT-AFAM would have taken more than 8 hours with lower341

resolution as seen in Figure 6(b).342

Finally, it is well known that the tip-sample interaction provides information about the contact343
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Figure 6: Results for graphite film over glass substrate. a) Conventional AFM topography, b) RT-
AFAM for 188-191kHz window, and S-AFAM frequency map for: c) 49-53kHz window, d) 82-
97kHz window, e) 168-176kHz window, and f) 186-194kHz window.

stiffness, which is product of effective contact and indentation modulus [8,9,18,37-45]. Using344

k = 2aE∗ and E∗ = ( 1
Mtip

+ 1
Msample

)−1, where a ∼ 11nm was obtained using the methodol-345

ogy by [46],Mtip = 170.33GPa [36] and the proposed model, an indentation modulus mapping is346

obtained, see Figure 7. This mapping was computed using the results shown in Figure 6(c), (d), (e)347

and (f) and the database shown in Figure 5.348

In Figure 7 (a) a higher difference between glass and graphite film can be seen when they are com-349

pared to RT-AFAM result. Even though the difference is very closed, S-AFAM can detect it a with350

higher resolution, see the histogram shown in Figure 7 (b). This difference is due to the glass sub-351

strate contribution and the thin thickness of the graphite film, where the indentation modulus are:352
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53.15MPa for glass substrate and 57.875MPa for the graphite film. These results agree with litera-353

ture [47].354

Figure 7: Results for graphite film over glass sample: a) Indentation modulus mapping and, b)
histogram for the mapping.

The results make S-AFAM suitable for non-homogeneous material when the local mechanical355

properties over the material have closed resonance frequencies using white-noise. This way of ex-356

citation perturbs all the resonance frequencies at the same time, making the resonant modes extrac-357

tion to be acquired in one measurement.358

Even though the deflection signal from the photo-diodes is weak, when it is Fourier transformed,359

the amplitude increases significantly in the Fourier domain. This is possible due to the next Fourier360
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transform property [25,31]361

f(t)↔ F (ω), (28)362

for a real constant a,363

f(at)↔ 1

| a |
F
(ω
a

)
, (29)364

when | a |< 1, it is possible to measure higher resonance frequencies without losing frequency365

resolution.366

Theoretically, white-noise signal features an infinite flat-bandwidth which is impossible to gen-367

erate [34,48]. Fortunately, this can be generated as an approximation using a waveform function368

generator, which makes white-noise an ideal signal for system identification because it can ex-369

cite all the system dynamics instantaneously, i.e. it does not require time excitation such as sweep370

frequency[19]. Otherwise, it would not be possible to obtain using other kind of signals, i.e. per-371

sistent excitation [22]. Also, white-noise energy is lower than any other conventional signal avoid-372

ing either an electrical damage to the piezoelectric actuators or a physical damage to the sample.373

S-AFAM can be enhanced if a more capable instrumentation in real time is used, which allows an374

FFT to have a higher computational speed, and if a better white-noise signal generator is used, i.e.375

thermionic diode, which features a richer packet of frequencies.376

Conclusions377

S-AFAM can provide more information about aggregates, grain limits, mechanical stress of a grain,378

and so on when the local mechanical properties are closed, which makes these properties difficult379

to see when using a conventional technique. This achievement was possible because a white-noise380

excitation can extract more information about the tip-sample interaction than any other kind of sig-381

nals using a power spectral density model and system theory. Additionally, S-AFAM does not have382

to look for a resonance frequency as other conventional techniques do, it only uses a reduced and383

22



optimal instrumentation without a lock-in amplifier so that the signal from the photo-diodes is not384

affected by the time constant of the lock-in amplifier. The resonant modes extraction is acquired385

in one single step of measurement, and the stored data is minimized in a hard-disk where the time386

taken for a measurement is important.387

The results indicate that many contact resonance frequencies allow one indentation modulus value,388

where many values of indentation modulus would have been existed if other conventional technique389

would have been used. For this reason, it is important to have more than one vibrational mode390

of the tip-sample interaction since it provides quantitative knowledge about the contact stiffness,391

which is necessary in order to make further analysis about local mechanical properties.392

S-AFAM provides images not only in high-resolution frequency, but also in depth resolution com-393

pared to conventional techniques, which loses resolution due to instrumentation and kind of signal394

excitation used for experimental purpose. Using S-AFAM, allows to carrying out depth analysis395

about local mechanical properties with a suitable model capable of making a relation between reso-396

nance frequency and indentation modulus.397
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