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Vibration analysis and pull-in instability behavior in multi walled piezoelectric 

nano-sensor with fluid flow conveyance: influences of surface/interface energy  

 

Sayyid H. Hashemi Kachapi1 
* Department of Mechanical Engineering, Babol Noshirvani University of Technology, 

P.O.Box484, Shariati Street, Babol, Mazandaran47148-71167, Iran 

 

Abstract 

In this work, surface/interface effects for pull-in voltage and viscous fluid velocity effects on 

dimensionless natural frequency (DNF) of fluid-conveying multi walled piezoelectric nanoresonator 

(FC-MWPENS) based on cylindrical nanoshell is investigated using the Gurtin–Murdoch 

surface/interface theory. The nano-sensor is embedded in viscoelastic foundation, nonlinear van der 

Waals and electrostatic forces. Hamilton’s principle is used for deriving of the governing equations 

and boundary conditions and also the assumed mode method is used for changing the partial 

differential equations into ordinary differential equation. The influences of the surface/interface effect 

such as Lame’s constants (𝜆𝐼,𝑆, 𝜇𝐼,𝑆), residual stress (𝜏0
𝐼,𝑆), piezoelectric constants (𝑒31𝑝

𝑠𝑘 , 𝑒32𝑝
𝑠𝑘 ) and 

mass density (𝜌𝐼,𝑆) are considered for analysis of dimensionless natural frequency respect to viscous 

fluid velocity �̅�𝑓 and pull-in voltage �̅�𝐷𝐶 of FC-MWPENS. 

 

Keywords: fluid-conveying multi walled piezoelectric nano-sensor; surface/interface effect; pull-in 

voltage; stability analysis; viscous fluid velocity; electrostatic excitation; van der Waals force.  

 

Nomenclature: Notation and symbols 

symbols Description symbol Description 

ℎ𝑁𝑛 Thickness of nanoshell (NS) ℎ𝑝𝑛 Piezoelectric layer thickness  

𝐿 piezoelectric nanoshell Length 𝐸𝑝𝑛 Young modulus of piezoelectric layer 

𝑅𝑛 The mid-surface radius  𝜐𝑝𝑛 Poisson ratio of piezoelectric layer 

𝑥 Axial direction 𝜌𝑝 Mass density of piezoelectric layer 

𝜃 Circumferential direction 𝑒31𝑝𝑛, 𝑒32𝑝𝑛 Piezoelectric constants 

𝑧 Radius direction 𝜂33𝑝𝑛 Dielectric constant 

𝐸𝑁𝑛 Young modulus of nanoshell 𝑠𝑘𝑛 Piezoelectric inner and outer surface  

𝜐𝑁𝑛 Poisson ratio of nanoshell 𝜆𝑠𝑘𝑛 , 𝜇𝑠𝑘𝑛  Lame’s constants of piezoelectric layer 

𝜌𝑁𝑛 Mass density of nanoshell �̅�𝑝𝑛 Electric field 

𝐼𝑘𝑛  Nanoshell Inner and outer 

surface 
𝐷𝑧𝑝𝑛 Electric displacement 

𝜆𝐼𝑘(𝑛) , 𝜇𝐼𝑘(𝑛) Lame’s constants of nanoshell 𝜏0
𝑠𝑘𝑛  Residual stress of piezoelectric layer 

𝜏0
𝐼𝑘(𝑛)

 Residual stress of nanoshell 𝑒31𝑝𝑛
𝑠𝑘 , 𝑒32𝑝𝑛

𝑠𝑘  Surface piezoelectric constants  

𝜌𝐼𝑘(𝑛)  Nanoshell interface mass density 𝜌𝑠𝑘𝑛 Piezoelectric surface mass density 

𝐶𝑖𝑗𝑁𝑛 Elastic constant of nanoshell 𝐶𝑖𝑗𝑝𝑛 Elastic constant of piezoelectric layer 

𝜎𝑖𝑗𝑁𝑛 Middle stress of nanoshell 𝜎𝑖𝑗𝑝𝑛 Middle stress of piezoelectric layer 
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 𝜅(𝑥,𝜃) Curvature components 𝑉𝑝𝑛 Piezoelectric voltage 

𝜀(𝑥,𝜃)
0 ,𝛾𝑥𝜃

0  Middle surface strains 𝜋𝑛 Total strain energy 

𝑢 Displacement of 𝑥 direction 𝑇𝑛 Total kinetic energy 

𝑣 Displacement of 𝜃 direction 𝐼𝑛 Mass moments of inertia 

𝑤 Displacement of 𝑧 direction 𝐶𝑤𝑛 Damping coefficient  

𝛻 Laplace operator 𝐾𝑤𝑛 Winkler modulus 

𝜔 Natural frequency 𝐾𝑝𝑛 Pasternak Shear modulus  

𝑀 Total  mass matrix 𝑊𝑛 Total work 

𝐶 Total damping coefficient 𝐾𝑛 Total stiffness matrix 

�̅� Loads by piezoelectric voltage 𝑏𝑛 The nano-sensor  gap width 

𝑉𝐷𝑛𝐶 direct electric voltage 𝐶�̅�𝑑𝑤𝑛
 𝐿  Linear van der Waals coefficient 

𝐶�̅�𝑑𝑤𝑛
 𝑁𝐿  Nonlinear van der Waals 

coefficient 

  

 

1: Introduction 

Nanomechanical sensors and actuators specially combined with piezoelectric materials are 

widely used in modern engineering which have received considerable attention from researchers 

around the world, due to their unique features and widespread applications [1-3]. On the other hand, 

due to excessive use of nano-sensor, especially piezoelectric nano-sensor in vibration devices, 

modeling their mathematical modeling and vibration behaviors are essential and due to experimental 

observation, for the dynamics analysis and the mathematical modeling of these nano-structures, the 

size dependent parameters should be contained in theoretical models. For this reason, 

surface/interface elasticity, which was brought up by Gurtin and Murdoch, is taken into consideration 

[4]. Also, multi walled nanoshell (MWNS) are structurally built by multi concentric single-walled 

nanoshell (SWNS) and those mechanical properties are superior to the mechanical properties of 

SWNS. As a result, MWNSs are preferred, in some applications such as nanoresonator. 

Many studies have been carried out on the vibration and stability analysis of nanostructure 

that some of them are reviewed here. Strozzi and Pellicano investigated vibration analysis of triple-

walled carbon nanotubes (TWNTs) subjected to the interlayer van der Waals (vdW) force in the 

framework of the Sanders–Koiter shell theory [5]. Also, based on nonlocal cylindrical shell theory, 

Ghorbanpour Arani et al. studied nonlinear vibration and instability of the double walled boron nitride 

nanotubes [6]. Malihi et al. investigated the effect of nonzero initial conditions, nonlinear coefficient 

of squeeze film air damping and van derails effect on the stability of torsional nanomirrors for 

obtained dynamic pull-in instability voltage using the size effect [7]. Fakhrabadi et al. utilized the 

modified couple stress theory to investigate the effects of various fluid parameters on pull-in voltages 

of carbon nanotubes conveying- viscous fluid [8]. Also, vibration analysis of viscoelastic double-

walled carbon nanotube (DWCNT) unified with ZnO layers and subjected to magnetic and electric 

fields are studied by Fereidoon et al. [9]. Recently, Hashemi Kachapi et al. presented Gurtin–Murdoch 

surface/interface theory to investigate linear and nonlinear vibration analysis of piezoelectric 

nanostructures [10-13]. Also, nonlinear buckling and postbuckling behavior of functionally graded 

piezoelectric cylindrical nanoshells under lateral pressure are studied by Fang et al. using surface 

energy effect [14]. Wang utilized surface strain gradient elasticity to study a meticulous solution to 

the anti-plane shear problem of a circular elastic inhomogeneity [15]. Nami et al. utilized nonlocal 

elasticity theory and trigonometric shear deformation theory to investigate static analysis of 

https://journals.sagepub.com/doi/full/10.1177/1081286517727331
https://journals.sagepub.com/doi/full/10.1177/1081286517727331
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rectangular nanoplates [16]. The Gurtin–Murdoch surface theory is presented by Sigaeva et al. to 

stydy the universal model describing plane strain bending of a multilayered sector of a cylindrical 

tube [17]. Karimipour et al. presented modified strain gradient theory (MSGT) and Gurtin–Murdoch 

surface elasticity to investigate the size dependent nonlinear pull-in instability [18]. A new size-

dependent nonlinear model for the analysis of the behavior of carbon nanotube resonators is 

introduced by Farokhi et al. based on modified couple stress theory [19]. Surface stress effect on the 

vibration of cylindrical nanoshell according to the Gurtin- Murdoch theory is investigated by Rouhi 

et al. [20]. Liu et al. utilized a new finite element method for modeling thin structures with surface 

effects by using layered shell elements [21]. 

To the best knowledge of the author that surface/interface effect on pull-in voltage, viscous 

fluid velocity effects and dimensionless natural frequency of multi walled piezoelectric nano-sensor 

conveying viscous fluid based on cylindrical has not been studied yet. In the present study, the effect 

of surface/interface parameters such as Lame’s constants (𝜆𝐼,𝑆, 𝜇𝐼,𝑆), residual stress (𝜏0
𝐼,𝑆), 

piezoelectric constants (𝑒31𝑝
𝑠𝑘 , 𝑒32𝑝

𝑠𝑘 ) and mass density (𝜌𝐼,𝑆) are studied for analysis of dimensionless 

natural frequency respect to viscous fluid velocity �̅�𝑓 and pull-in voltage �̅�𝐷𝐶 of FC-MWPENS that 

subjected to direct electrostatic voltage DC with nonlinear excitation, nonlinear van der Waals force 

and viscoelastic foundation. 

 

2: Mathematical formulation 

A schematic diagram of multi walled piezoelectric nano-sensor embedded with fluid-

conveying in inner layer and with two piezoelectric layers and viscoelastic foundation medium in 

outer layer is shown in Figure 1 (a-c). The geometrical parameters of the cylindrical shell are the 

length 𝐿, the mid-surface radius 𝑅𝑛 with nanoshell thickness 2ℎ𝑁𝑛 and coated by two piezoelectric 

layers with total thickness 2ℎ𝑝𝑛 for the outer walled and also the mid-surface radius 𝑅𝑘+1 and 

nanoshell thickness 2ℎ𝑁(𝑘+1) for the other inner walled layers. All of the physical and geometrical 

properties of the mentioned nanostructures for SWPENS can be seen in work done by Hashemi 

Kachapi et al. in reference [11, 13]. 

 

 
(a) Illustration of vdW forces between two adjacent tubes of a multiple shell cross section of a 

multi walled carbon nanotube (MWCNT) 

https://www.sciencedirect.com/topics/engineering/nonlinear-model
https://www.sciencedirect.com/topics/engineering/resonators
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(b) Modeling of 1…𝑘 + 1 tube of MWCNT as a fluid-conveying nano-sensor with surface model 

 
(c) Modeling of last tube of MWCNT as a piezoelectric nano-sensor with surface/interface model 

Fig. 1. Fluid-conveying multi walled piezoelectric nano-sensor  

 

 

 

2-1: Non- classical Shell theory 

Within the framework of Gurtin–Murdoch surface/interface elasticity theory, the normal stresses 𝜎𝑥𝑥 

and 𝜎𝜃𝜃 can be written as [4, 10-14] 

(1) 𝜎𝑥𝑥(𝑁,𝑝) = 𝐶11(𝑁,𝑝)𝜀𝑥𝑥 + 𝐶12(𝑁,𝑝)𝜀𝜃𝜃 − 𝑒31𝑝�̅�𝑥𝑝 +
𝜐(𝑁,𝑝)𝜎𝑧𝑧(𝑁,𝑝)

1 − 𝜐(𝑁,𝑝)
,

 

(2) 𝜎𝜃𝜃(𝑁,𝑝) = 𝐶21(𝑁,𝑝)𝜀𝑥𝑥 + 𝐶22(𝑁,𝑝)𝜀𝜃𝜃 − 𝑒32𝑝�̅�𝜃𝑝 +
𝜐(𝑁,𝑝)𝜎𝑧𝑧(𝑁,𝑝)

1 − 𝜐(𝑁,𝑝)
,

 

(3) 𝜎𝑥𝜃(𝑁,𝑝) = 𝐶66(𝑁,𝑝)𝛾𝑥𝜃, 

Where based on nonclassical continuum model, 𝜎𝑧𝑧 is expressed as following 

(4) 𝜎𝑧𝑧 =
𝑧

ℎ𝑁𝑛 + ℎ𝑝2
((𝜏0

𝑝𝑠 + 𝜏0
𝑁𝐼)(

𝜕2𝑤

𝜕𝑥2
+
1

𝑅2
𝜕2𝑤

𝜕𝜃2
) − (𝜌𝑝𝑠 + 𝜌𝑁𝐼)

𝜕2𝑤

𝜕𝑡2
), 
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In all following formulations, all of the piezoelectric parameters (the materials and geometrical 

parameters) are neglected for first layer and to be zero and all of the materials and geometrical 

parameters of nanoshell in the first layer are similar to the second layer of nanostructure.  

Also all coefficients and phrases of Eqs. (1)- (4) such as nonlinear deflection, displacement fields and 

curvatures, relations of Gurtin–Murdoch surface/interface elasticity theory and etc. can be expressed 

in full detail in reference [11-13]. 

 

2-2: Governing equations  

In current section, the governing equations and boundary conditions of the MW piezoelectric 

nanostructure are obtained by using the Hamilton principle. The total strain energy considering the 

surface/interface effect is written as: 

(5) 

𝜋𝑛 =
1

2
∫ ∫ ∫ 𝜎𝑖𝑗𝑁𝜀𝑖𝑗

ℎ𝑁

−ℎ𝑁

2𝜋

0

𝐿

0

𝑅𝑑𝑧𝑑𝜃𝑑𝑥 +
1

2
∫ ∫ ∫ (𝜎𝑖𝑗𝑝𝜀𝑖𝑗 − �̅�𝑧𝑝2𝐷𝑧𝑝)

ℎ𝑁+ℎ𝑝

ℎ𝑁

2𝜋

0

𝐿

0

𝑅𝑑𝑧𝑑𝜃𝑑𝑥 

+
1

2
∫ ∫ (𝜎𝑖𝑗

𝑠2𝜀𝑖𝑗 − �̅�𝑧𝑝𝐷𝑖
𝑠2)

2𝜋

0

(𝑅 + ℎ𝑁 + ℎ𝑝)
𝐿

0

𝑑𝜃𝑑𝑥 +
1

2
∫ ∫ 𝜎𝑖𝑗

𝑠1𝜀𝑖𝑗

2𝜋

0

(𝑅−ℎ𝑁)𝑑𝜃𝑑𝑥
𝐿

0

 

=
1

2
∫ ∫ {

𝑁𝑥𝑥𝑛𝜀𝑥𝑥
0 + 𝑁𝜃𝜃𝑛𝜀𝜃𝜃

0 + 𝑁𝑥𝜃𝑛𝛾𝑥𝜃
0 +𝑀𝑥𝑥𝑛𝜅𝑥𝑥 +𝑀𝜃𝜃𝑛𝜅𝜃𝜃 +𝑀𝑥𝜃𝑛𝜅𝑥𝜃
+𝜂33�̅�𝑧𝑝

2 ℎ𝑝
}

2𝜋

0

𝐿

0

𝑅𝑛𝑑𝜃𝑑𝑥 

In Eq. (5), the forces (𝑁) and moment (𝑀) resultants are defined in reference Hashemi Kachapi et al. 

[13] for SWPENS. And, as explained, all the sentences mentioned in reference [13] belong to the last 

wall (in this article, the third wall), which is considered a nanoshell with two piezoelectric layers, and 

in the other walls (in this article, the first and second walls) are not considered piezoelectric effects. 

The kinetic energy of the FC-MWPENS can be written as: 

(6) 𝑇𝑛 =
1

2
∬𝐼𝑛 ((

𝜕𝑢𝑛
𝜕𝑡
)
2

+ (
𝜕𝑣𝑛
𝜕𝑡
)
2

+ (
𝜕𝑤𝑛
𝜕𝑡

)
2

)𝑅𝑛𝑑𝜃𝑑𝑥
 

where  

 𝐼𝑛 = ∫ 𝜌𝑁

ℎ𝑁

−ℎ𝑁

𝑑𝑧 + ∫ 𝜌𝑝

−ℎ𝑁

−ℎ𝑁−ℎ𝑝

𝑑𝑧 + ∫ 𝜌𝑝

ℎ𝑁+ℎ𝑝

ℎ𝑁

𝑑𝑧 + 𝜌𝑆,𝐼 = 2𝜌𝑁ℎ𝑁 + 2𝜌𝑝ℎ𝑝 + 2𝜌
𝑝𝑠 + 2𝜌𝑁𝐼 

 

The work done by the surrounded viscoelastic medium including the viscoelastic foundation and also 

the nonlinear van der Waals interaction and the nonlinear electrostatic force for example for three 

walled piezoelectric nano-sensor (TWPENS), respectively, can be expressed as [13, 22, 23] 

(7) 

𝑊𝑣𝑑𝑤 = ∫ ∫ ∫ (𝐶𝑣𝑑𝑤(12)
 𝐿 (𝑤2 − 𝑤1) + 𝐶𝑣𝑑𝑤(12)

 𝑁𝐿 (𝑤2 − 𝑤1)
3)𝑑𝑤1

𝑤1

0

2𝜋

0

𝐿

0

𝑅1𝑑𝜃𝑑𝑥 

+∫ ∫ ∫ (

𝐶𝑣𝑑𝑤(23)
 𝐿 (𝑤3 − 𝑤2) + 𝐶𝑣𝑑𝑤(23)

 𝑁𝐿 (𝑤3 − 𝑤2)
3

−(
𝑅1
𝑅2
) (𝐶𝑣𝑑𝑤(12)

 𝐿 (𝑤2 − 𝑤1) + 𝐶𝑣𝑑𝑤(12)
 𝑁𝐿 (𝑤2 − 𝑤1)

3)
)𝑑𝑤2

𝑤2

0

2𝜋

0

𝑅2𝑑𝜃𝑑𝑥
𝐿

0
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−∫ ∫ ∫ (
𝑅2
𝑅3
) (𝐶𝑣𝑑𝑤(32)

 𝐿 (𝑤3 − 𝑤2) + 𝐶𝑣𝑑𝑤(32)
 𝑁𝐿 (𝑤3 − 𝑤2)

3)𝑑𝑤3

𝑤3

0

2𝜋

0

𝑅3𝑑𝜃𝑑𝑥
𝐿

0

, 

(8) 𝑊𝑣𝑚 = −∫ ∫ ∫ (𝐾𝑤𝑤3 − 𝐾𝑝𝛻
2𝑤3 + 𝐶𝑤

𝜕𝑤3
𝜕𝑡
) 𝑑𝑤3𝑅3𝑑𝜃𝑑𝑥

𝑤3

0

2𝜋

0

𝐿

0

, 

(9) 𝑊𝑒 = ∫ ∫ ∫
𝜋Υ(𝑉𝐷𝐶 + 𝑉𝐴𝐶cos (𝜔𝑡))

2

√(𝑏2 − 𝑤3)(2𝑅3 + 𝑏3 − 𝑤3) [cosh−1 (1 +
𝑏3−𝑤3

𝑅3
)]
2 𝑑𝑤3

𝑤3

0

2𝜋

0

𝑅3𝑑𝜃𝑑𝑥
𝐿

0

, 

 

Where all coefficients and phrases of Eqs. (7)- (9) can be seen in reference [11-13]. Also, the external 

work of the fluid can be written as [24] 

 

(10) 

𝑊𝑓 =
1

2
∫ ∫ 𝐹𝑓𝑙𝑢𝑖𝑑

2𝜋

0

𝑤
𝐿

0

𝑅𝑑𝜃𝑑𝑥 

=
1

2
∫ ∫

{
 
 
 
 

 
 
 
 

−𝜌𝑓𝐴𝑓

(

 

𝜕2𝑤

𝜕𝑡2
+ 2(𝑉𝐶𝐹 × 𝑉𝑛𝑜−𝑠𝑙𝑖𝑝)

𝜕2𝑤

𝜕𝑥𝜕𝑡

+(𝑉𝐶𝐹 × 𝑉𝑛𝑜−𝑠𝑙𝑖𝑝)
2 𝜕2𝑤

𝜕𝑥2 )

 

+𝜇𝐴𝑓

(

 
 

𝜕3𝑤

𝜕𝑥2𝜕𝑡
+

𝜕3𝑤

𝑅2𝜕𝜃2𝜕𝑡

+(𝑉𝐶𝐹 × 𝑉𝑛𝑜−𝑠𝑙𝑖𝑝)(
𝜕3𝑤

𝜕𝑥3
+

𝜕3𝑤

𝑅2𝜕𝑥𝜕𝜃2
)
)

 
 

}
 
 
 
 

 
 
 
 

2𝜋

0

𝑤
𝐿

0

𝑅𝑑𝜃𝑑𝑥
 

 

By applying of following Hamilton’s principle 

(11) ∫ (𝛿𝑇𝑛 − 𝛿𝜋𝑛 + 𝛿𝑤𝑣𝑚 + 𝛿𝑤𝑣𝑑𝑤 + 𝛿𝑤𝑒)𝑑𝑡 = 0,
𝑡

0

 

and substituting Eqs. (5)- (10) into Eq. (11), the governing equations of motion and boundary 

conditions for FC-TWPENS respectively are obtained as follows; 

(12) 𝛿𝑢𝑛 :    
𝜕𝑁𝑥𝑛
𝜕𝑥

+
1

𝑅𝑛

𝜕𝑁𝑥𝜃𝑛
𝜕𝜃

= 𝐼𝑛
𝜕2𝑢𝑛
𝜕𝑡2

, 

(13) 𝛿𝑣𝑛 :    
𝜕𝑁𝑥𝜃𝑛
𝜕𝑥

+
1

𝑅𝑛

𝜕𝑁𝜃𝑛
𝜕𝜃

= 𝐼𝑛
𝜕2𝑣𝑛
𝜕𝑡2

, 

(14) 

𝛿𝑤𝑛 :    
𝜕2𝑀𝑥𝑛

𝜕𝑥2
+
2

𝑅𝑛

𝜕2𝑀𝑥𝜃𝑛

𝜕𝑥𝜕𝜃
+
1

𝑅𝑛2
𝜕2𝑀𝜃𝑛

𝜕𝜃2
−
𝑁𝜃𝑛
𝑅𝑛

+ 𝑁𝑥𝑛
𝜕2𝑤𝑛
𝜕𝑥2

+
𝜕𝑁𝑥𝑛
𝜕𝑥

𝜕𝑤𝑛
𝜕𝑥

+
𝑁𝜃𝑛
𝑅𝑛2

𝜕2𝑤𝑛
𝜕𝜃2

 

+
1

𝑅𝑛2
𝜕𝑁𝜃𝑛
𝜕𝜃

𝜕𝑤𝑛
𝜕𝜃

+
2

𝑅𝑛
𝑁𝑥𝜃𝑛

𝜕2𝑤𝑛
𝜕𝑥𝜕𝜃

+
1

𝑅𝑛
 
𝜕𝑁𝑥𝜃𝑛
𝜕𝑥

𝜕𝑤𝑛
𝜕𝜃

+
1

𝑅𝑛

𝜕𝑁𝑥𝜃𝑛
𝜕𝜃

𝜕𝑤𝑛
𝜕𝑥

= 𝐼𝑛
𝜕2𝑤𝑛
𝜕𝑡2

+ 𝑆𝑛 



7 

−
𝜋Υ(𝑉𝐷𝐶 + 𝑉𝐴𝐶cos (𝜔𝑡))

2

√(𝑏2 − 𝑤2)(2𝑅2 + 𝑏2 − 𝑤2) [cosh−1 (1 +
𝑏2−𝑤2

𝑅2
)]
2, 

where 𝑆𝑛 for the inner and outer layer, respectively, are:  

(15a) 𝑆1 = −(𝐶𝑣𝑑𝑤(12)
 𝐿 (𝑤2 − 𝑤1) + 𝐶𝑣𝑑𝑤(12)

 𝑁𝐿 (𝑤2 − 𝑤1)
3),) 

(15b) 𝑆2 = (

−𝐶𝑣𝑑𝑤(23)
 𝐿 (𝑤3 − 𝑤2) − 𝐶𝑣𝑑𝑤(23)

 𝑁𝐿 (𝑤3 − 𝑤2)
3

+(
𝑅1
𝑅2
) (𝐶𝑣𝑑𝑤(12)

 𝐿 (𝑤2 − 𝑤1) + 𝐶𝑣𝑑𝑤(12)
 𝑁𝐿 (𝑤2 −𝑤1)

3)
) 

(15c) 𝑆3 =

(

 
(
𝑅2
𝑅3
) (𝐶𝑣𝑑𝑤(32)

 𝐿 (𝑤3 −𝑤2) + 𝐶𝑣𝑑𝑤(32)
 𝑁𝐿 (𝑤3 − 𝑤2)

3)

+𝐾𝑤𝑤3 − 𝐾𝑝∇
2𝑤3 + 𝐶𝑤

𝜕𝑤3
𝜕𝑡 )

  

and boundary conditions are obtained as follows: 

(16) 𝛿𝑢𝑛 = 0     𝑜𝑟        𝑁𝑥𝑛𝑛𝑥 +
1

𝑅𝑛
𝑁𝑥𝜃𝑛𝑛𝜃 = 0, 

(17) 𝛿𝑣𝑛 = 0     𝑜𝑟        𝑁𝑥𝜃𝑛𝑛𝑥 +
1

𝑅𝑛
𝑁𝜃𝑛𝑛𝜃 = 0, 

(18) 

𝛿𝑤𝑛 = 0    𝑜𝑟     (
𝜕𝑀𝑥𝑛

𝜕𝑥
+
1

𝑅𝑛

𝜕𝑀𝑥𝜃𝑛

𝜕𝜃
+ 𝑁𝑥𝑥

𝜕𝑤𝑛
𝜕𝑥

+
𝑁𝑥𝜃
𝑅𝑛

𝜕𝑤𝑛
𝜕𝜃

) 𝑛𝑥 

+(
1

𝑅𝑛

𝜕𝑀𝑥𝜃𝑛

𝜕𝑥
+
1

𝑅𝑛2
𝜕𝑀𝜃𝑛

𝜕𝜃
+
𝑁𝑥𝜃𝑛
𝑅𝑛

𝜕𝑤𝑛
𝜕𝑥

+
𝑁𝜃𝑛
𝑅𝑛2

𝜕𝑤𝑛
𝜕𝜃

) 𝑛𝜃 = 0, 

(19) 

𝜕𝑤𝑛
𝜕𝑥

= 0     𝑜𝑟        𝑀𝑥𝑛𝑛𝑥 +
1

𝑅𝑛
𝑀𝑥𝜃𝑛𝑛𝜃 = 0,

 

(20) 

𝜕𝑤𝑛
𝜕𝜃

= 0     𝑜𝑟        
1

𝑅𝑛
𝑀𝑥𝜃𝑛𝑛𝑥 +

1

𝑅𝑛2
𝑀𝜃𝑛𝑛𝜃 = 0,

 

The following dimensional parameters are also used to dimensionless equations of motion and 

boundary conditions. 
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(21) 

�̅�𝑛 =
𝑢𝑛
ℎ𝑁𝑛

, �̅�𝑛 =
𝑣𝑛
ℎ𝑁𝑛

, �̅�𝑛 =
𝑤𝑛
ℎ𝑁𝑛

, 𝜉𝑛 =
𝑥𝑛
𝐿
, �̅�𝑛 =

𝑏𝑛
𝐿
, �̅�𝑖𝑗𝑁𝑛 =

𝐴𝑖𝑗𝑁𝑛

𝐴11𝑁𝑛
, �̅�𝑖𝑗𝑁𝑛 =

𝐵𝑖𝑗𝑁𝑛

𝐴11𝑁𝑛ℎ𝑁𝑛
, 

�̅�𝑖𝑗𝑁𝑛 =
𝐷𝑖𝑗𝑁𝑛

𝐴11𝑁𝑛ℎ𝑁𝑛
2 , �̅�𝑖𝑗𝑝𝑛 =

𝐴𝑖𝑗𝑝𝑛

𝐴11𝑁𝑛
, �̅�𝑖𝑗𝑛

∗ =
𝐴𝑖𝑗𝑛
∗

𝐴11𝑁𝑛
, �̅�𝑖𝑗𝑝𝑛 =

𝐵𝑖𝑗𝑝𝑛

𝐴11𝑁𝑛ℎ𝑁𝑛
, �̅�𝑖𝑗𝑛

∗ =
𝐵𝑖𝑗𝑛
∗

𝐴11𝑁𝑛ℎ𝑁𝑛
, 

�̅�𝑖𝑗𝑝𝑛 =
𝐷𝑖𝑗𝑝𝑛

𝐴11𝑁𝑛ℎ𝑁𝑛
2 , �̅�𝑖𝑗𝑛

∗ =
𝐷𝑖𝑗𝑛
∗

𝐴11𝑁𝑛ℎ𝑁𝑛
2  , �̅�11𝑁𝑛

∗ =
𝐹11𝑁𝑛
∗

𝐴11𝑁𝑛ℎ𝑁𝑛
, �̅�11𝑝𝑛

∗ =
𝐹11𝑝𝑛
∗

𝐴11𝑁𝑛ℎ𝑁𝑛
, 

�̅�11𝑁𝑛
∗ =

𝐸11𝑁𝑛
∗

𝐴11𝑁𝑛ℎ𝑁𝑛
2 , �̅�11𝑝𝑛

∗ =
𝐸11𝑝𝑛
∗

𝐴11𝑁𝑛ℎ𝑁𝑛
2 , 𝐽1̅1𝑁𝑛

∗ =
𝐽11𝑁𝑛
∗

𝜌𝑁𝑛ℎ𝑁𝑛
2 , 𝐽11𝑝𝑛

∗ =
𝐽11𝑝𝑛
∗

𝜌𝑁𝑛ℎ𝑁𝑛
2 , 

�̅�11𝑁𝑛
∗ =

𝐺11𝑁𝑛
∗

𝜌𝑁𝑛ℎ𝑁𝑛
3 , 𝐺11𝑝𝑛

∗ =
𝐺11𝑝𝑛
∗

𝜌𝑁𝑛ℎ𝑁𝑛
3 , �̅�𝑥𝑝𝑛

∗ =
𝑁𝑥𝑝𝑛
∗ 𝑉0

𝐴11𝑁𝑛
, �̅�𝜃𝑝𝑛

∗ =
𝑁𝜃𝑝𝑛
∗ 𝑉0

𝐴11𝑁𝑛
, �̅�𝑥𝑝𝑛

∗

=
𝑀𝑥𝑝𝑛
∗ 𝑉0

𝐴11𝑁𝑛ℎ𝑁𝑛
, 

�̅�𝜃𝑝𝑛
∗ =

𝑀𝜃𝑝𝑛
∗ 𝑉0

𝐴11𝑁𝑛ℎ𝑁𝑛
, 𝜏0̅
𝑠𝑛 =

𝜏0
𝑠𝑛

𝐴11𝑁𝑛
, �̅�𝑛 =

𝑅𝑛
𝐿
,𝑚0𝑛 =

𝐿

𝑅𝑛
, 𝑚1𝑛 =

𝐿

ℎ𝑁𝑛
, 𝑚2𝑛 =

ℎ𝑁𝑛
𝑅𝑛

= ℎ̅𝑁𝑛 , 

ℎ̅𝑝𝑛 =
ℎ𝑝𝑛

𝑅𝑛
, 𝑚3𝑛 =

𝐼𝑛
2𝜌𝑁𝑛ℎ𝑁𝑛

, 𝑚4𝑛 =
ℎ𝑝𝑛

ℎ𝑁𝑛
 , Ωn = √

𝐴11𝑁𝑛
2𝜌𝑁𝑛ℎ𝑁𝑛𝐿2

, 𝜏𝑛 = Ωn𝑡𝑛, �̅�𝑛 =
𝜔𝑛
Ωn
, 

𝐾𝑤 =
𝐾𝑤𝐿

2

𝑚3𝐴11𝑁
, �̅�𝑝 =

𝐾𝑝

𝑚3𝐴11𝑁
, 𝐶�̅�2 =

𝐶𝑤Ω𝐿
2

𝑚3𝑛𝐴11𝑁𝑛
, 𝐶�̅�𝑑𝑤𝑛

 𝐿 =
𝐶𝑣𝑑𝑤𝑛
 𝐿 𝐿2

𝑚3𝑛𝐴11𝑁𝑛
, 

𝐶�̅�𝑑𝑤𝑛
 𝑁𝐿 =

𝐶𝑣𝑑𝑤𝑛
 𝑁𝐿 𝐿2ℎ𝑁𝑛

2

𝑚3𝑛𝐴11𝑁𝑛
, �̅�𝑓 =

𝜌𝑓

𝑚3𝜌𝑁
, �̅�𝑓 = (𝑉𝐶𝐹 × 𝑉𝑛𝑜−𝑠𝑙𝑖𝑝)√

2𝜌𝑁ℎ𝑁
𝐴11𝑁

, 

 �̅�𝑓 =
𝜇𝑓

𝑚3

√
2ℎ𝑁

𝜌𝑁𝐴11𝑁𝐿2
, �̅�𝐷𝐶 =

𝑉𝐷𝐶
𝑉0

, �̅�𝑝2 =
𝑉𝑝2

𝑉0
, �̅�𝑒 =

𝜋𝑚1
2𝑉0

2Υ

𝑚3𝐴11𝑁
, 

In current study, the electrostatic force Eq. (9) can be expressed as a polynomial form that is solved 

by nonlinear curve-fitting problem of lsqcurvefit function in Matlab Toolbox using least-squares. 

Therefore, the dimensionless electrostatic work can be written as follows [13]: 

 

(22) 𝑊𝑒 = ∫ ∫ ∫ �̅�𝑒(�̅�𝐷𝐶 + �̅�𝐴𝐶 cos(�̅�𝜏))
2 (
𝐶1̅ + 𝐶2̅�̅�3 + 𝐶3̅�̅�3

2

+⋯+ 𝐶�̅��̅�3
𝑛−1 )

�̅�3

0

𝑑�̅�3

2𝜋

0

𝐿

0

�̅�3𝑑𝜃𝑑𝜉
 

 

2-3: Solution procedure 

By using the following shear deformation and displacement in the assumed mode method [11-13] 

(23) [

𝑢𝑛(𝑥, 𝜃, 𝑡)

𝑣𝑛(𝑥, 𝜃, 𝑡)

𝑤𝑛(𝑥, 𝜃, 𝑡)
] = ∑∑[

[𝑢𝑚,𝑗,𝑐(𝜏) cos(𝑗𝜃) + 𝑢𝑚,𝑗,𝑠(𝜏) sin(𝑗𝜃)]𝜒𝑚𝑗(𝜉)

[𝑣𝑚,𝑗,𝑐(𝜏) sin(𝑗𝜃) + 𝑣𝑚,𝑗,𝑠(𝜏) cos(𝑗𝜃)]𝜙𝑚𝑗(𝜉)

[𝑤𝑚,𝑗,𝑐(𝜏) cos(𝑗𝜃) + 𝑤𝑚,𝑗,𝑠(𝜏) sin(𝑗𝜃)]𝛽𝑚𝑗(𝜉)

]

𝑁

𝑗=1

𝑀1

𝑚=1
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+∑ [

𝑢𝑚,0(𝜏)𝜒𝑚0(𝜉)

𝑣𝑚,0(𝜏)𝜙𝑚0(𝜉)

𝑤𝑚,0(𝜏)𝛽𝑚0(𝜉)

]

𝑀2

𝑚=1

= ∑ [

𝑢𝑛𝑖(𝜏)𝜒𝑛𝑖(𝜉)𝜗𝑛𝑖(𝜃)

𝑣𝑛𝑟(𝜏)𝜙𝑛𝑟(𝜉)𝛼𝑛𝑟(𝜃)

𝑤𝑛𝑠(𝜏)𝛽𝑛𝑠(𝜉)𝜓𝑛𝑠(𝜃)

] ,

𝑀2+𝑀1×𝑁

(𝑖,𝑟,𝑠)=1

 

And using dimensionless strain and kinetic energies Eqs. (5) and (6) and dimensionless applied works 

Eqs. (7)- (9) and substituting of the Lagrange-Euler equations, the following reduced-order model of 

the nonlinear equations of motion are obtained: 

(24) [(𝑀)𝑢
𝑢]𝑛{�̈̅�𝑛} + [(𝑀)𝑢

𝑤]𝑛{�̈̅�𝑛} + [(𝐾)𝑢
𝑢]𝑛{�̅�𝑛} + [(𝐾)𝑢

𝑣 ]𝑛{�̅�𝑛} + [(𝐾)𝑢
𝑤]𝑛{�̅�𝑛} 

+[(𝑁𝐿)𝑢
𝑤]𝑛{�̅�𝑛

2} = �̅�𝑢𝑛, 

(25) 
[(𝑀)𝑣

𝑣]𝑛{�̈̅�𝑛} + [(𝑀)𝑣
𝑤]𝑛{�̈̅�𝑛} + [(𝐾)𝑣

𝑣]𝑛{�̅�𝑛} + [(𝐾)𝑣
𝑢]𝑛{�̅�𝑛} + [(𝐾)𝑣

𝑤]𝑛{�̅�𝑛} 

+[(𝑁𝐿)𝑣
𝑤]𝑛]{�̅�𝑛

2} = �̅�𝑣𝑛, 

(26) [[(𝑀)𝑤
𝑤]𝑛 + [(𝐾)𝑤2

�̈� ]
𝑛
{�̅�𝑛}] {�̈̅�𝑛} + [(𝑐)𝑤

𝑤]{�̇̅�𝑛} + [(𝐾)𝑤
𝑢 ]𝑛{�̅�𝑛} + [(𝐾)𝑤

𝑣 ]𝑛{�̅�𝑛} 

+[[(𝐾)𝑤
𝑤]𝑛 − �̅�𝑒2(𝐾𝑒)𝑤

𝑤]{�̅�𝑛} 

+(−1)𝑛𝑞1 (
�̅�𝑛−1

�̅�𝑛
)

𝑚1

𝐶̅𝑣𝑑𝑤((𝑛−1)𝑛)
 𝐿 ([(𝐾)𝑤1𝑛

𝑣𝑑𝑤]{�̅�𝑛} − [(𝐾)𝑤2𝑛
𝑣𝑑𝑤]{�̅�𝑛−1}) 

+(−1)𝑛𝑞2 (
�̅�𝑛

�̅�𝑛+1
)

𝑚2

𝐶̅𝑣𝑑𝑤(𝑛(𝑛+1))
 𝐿 ([(𝐾)𝑤3𝑛

𝑣𝑑𝑤]{�̅�𝑛+1} − [(𝐾)𝑤4𝑛
𝑣𝑑𝑤]{�̅�𝑛}) 

+(−1)𝑛𝑞1 (
�̅�𝑛−1

�̅�𝑛
)

𝑚1

(𝐶̅𝑣𝑑𝑤((𝑛−1)𝑛)
 𝑁𝐿 ) (

[(𝑁𝐿)𝑤1𝑛
𝑣𝑑𝑤]�̅�𝑛

3 − 3[(𝑁𝐿)𝑤2𝑛
𝑣𝑑𝑤]�̅�𝑛

2�̅�𝑛−1
+3[(𝑁𝐿)𝑤3𝑛

𝑣𝑑𝑤]�̅�𝑛�̅�𝑛−1
2 − [(𝑁𝐿)𝑤4𝑛

𝑣𝑑𝑤]�̅�𝑛−1
3 ) 

+(−1)𝑛𝑞2 (
�̅�𝑛

�̅�𝑛+1
)

𝑚2

(𝐶̅𝑣𝑑𝑤(𝑛(𝑛+1))
 𝑁𝐿 ) (

[(𝑁𝐿)𝑤5𝑛
𝑣𝑑𝑤]�̅�𝑛+1

3 − 3[(𝑁𝐿)𝑤6𝑛
𝑣𝑑𝑤]�̅�𝑛+1

2 �̅�𝑛

+3[(𝑁𝐿)𝑤7𝑛
𝑣𝑑𝑤]�̅�𝑛+1�̅�𝑛

2 − [(𝑁𝐿)𝑤8𝑛
𝑣𝑑𝑤]�̅�𝑛

3
) 

+[(𝑁𝐿)𝑤
𝑢 ]{�̅�𝑛�̅�𝑛} + [(𝑁𝐿)𝑤

𝑣 ]{�̅�𝑛�̅�𝑛} + [(𝑁𝐿)𝑤2
𝑤 − �̅�𝑒3(𝑁𝐿2𝑒)𝑤

𝑤]{�̅�𝑛
2} 

+[(𝑁𝐿)𝑤3
𝑤 − �̅�𝑒4(𝑁𝐿3𝑒)𝑤

𝑤]{�̅�𝑛
3} = �̅�𝑤𝑒 + �̅�𝑤𝑛 

+�̅�𝑒{((�̅�𝐴𝐶𝑐𝑜𝑠�̅�𝜏)
2 + 2�̅�𝐴𝐶�̅�𝐷𝐶𝑐𝑜𝑠�̅�𝜏)(�̅�4(𝑁𝐿3𝑒)𝑤

𝑤 + 𝐶3̅(𝑁𝐿2𝑒)𝑤
𝑤 + 𝐶2̅(𝐾𝑒)𝑤

𝑤 + 𝐶1̅�̅�1)}

 

In Eq. (26), for 𝑛 = 1: 𝑚2 = 𝑞1 = 0 ; 𝑞2 = 1; for 𝑛 = 2: 𝑚2 = 0; 𝑚1 = 𝑞1 = 1; 𝑞2 = −1;and for 

𝑛 = 3: 𝑞2 = 0;𝑚1 = 1; 𝑞1 = −1. Also, [(𝐾)𝑤
𝑣𝑑𝑤]𝑛 is stiffness matrix for van der Walls effect. All 

coefficients of Eqs. (24) - (26) are presented in Appendix 1 and 2.  

 

3: Results and Discussions 

Verification study is investigated in reference Hashemi Kachapi et al. [11-13] with full details for 

SW and DW piezoelectric nanostructures. In this section, the effects of surface/interface parameters 

of FC-MWPENS such as Lame’s constants (𝜆𝐼,𝑆, 𝜇𝐼,𝑆), residual stress (𝜏0
𝐼,𝑆), piezoelectric constants 
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(𝑒31𝑝
𝑠𝑘 , 𝑒32𝑝

𝑠𝑘 ) and mass density (𝜌𝐼,𝑆) is investigated for analysis of dimensionless natural frequency 

respect to viscous fluid velocity �̅�𝑓 and pull-in voltage �̅�𝐷𝐶. In order to simplify the presentation, CC, 

SS and CS represent clamped edge, simply supported edge and clamped-simply supported edge, 

respectively. The material properties for the different layers of Aluminum nanoshell (Al) and 

piezoelectric layer (PZT-4) are shown in Tables 1 and 2, respectively [11, 13]. 

 

Table 1. Surface and bulk properties of Al 

𝐸𝑁(𝐺𝑃𝑎) 𝜐𝑁 𝜌𝑁(𝑘𝑔/ 𝑚
3)  𝜆𝐼(𝑁 𝑚⁄ ) 𝜇𝐼(𝑁 𝑚⁄ )  𝜏0

𝐼(𝑁 𝑚⁄ ) 𝜌𝐼(𝑘𝑔 𝑚2⁄ ) 

70 0.33 2700 3.786 1.95 0.9108 5.46 × 10−7 

 

Table 2. Surface and bulk properties of PZT-4 

𝐶11𝑝(𝐺𝑃𝑎)  𝐶22𝑝(𝐺𝑃𝑎) 𝐶12𝑝(𝐺𝑃𝑎)  𝐶21𝑝(𝐺𝑃𝑎) 𝐶66𝑝(𝐺𝑃𝑎) 𝐸𝑝(𝐺𝑃𝑎) 
 

139 139 77.8 77.8 30.5 95 

𝜐𝑝 𝜌𝑝(𝑘𝑔 𝑚
−3)  𝜂33𝑝(10

−8 𝐹 𝑚⁄ )  𝜆𝑆(𝑁 𝑚⁄ ) 𝜇𝑆(𝑁 𝑚⁄ ) 𝜏0
𝑆(𝑁 𝑚⁄ ) 

0.3 7500 8.91 4.488 2.774 0.6048 

𝑒31𝑝(𝐶 𝑚2⁄ )  𝑒32𝑝(𝐶 𝑚2⁄ )  𝑒31𝑝
𝑆 (𝐶 𝑚⁄ )  𝑒32𝑝

𝑆 (𝐶 𝑚⁄ ) 𝜌𝑆(𝑘𝑔 𝑚2⁄ )  

−5.2 −5.2 −3 × 10−8 −3 × 10−8 5.61 × 10−6  

 

The others geometrical parameters for bulk and surface of FC-MWPENS in all following results are 

shown in Table 3 [11, 13]. 

 

Table 3. The material and geometrical parameters 

𝑅1(𝑚) 𝑅2(𝑚) 𝑅2(𝑚) 𝐿 𝑅⁄ 1  ℎ𝑁(1,2,3) 𝑅⁄ 1
 

1 × 10−9 1.5 × 10−9 2 × 10−9 10 0.01 

 ℎ𝑝3 𝑅⁄
1
  𝑏3 𝑅⁄

3
  𝐾𝑤3(𝑁 𝑚3⁄ )  𝐾𝑝3(𝑁 𝑚⁄ ) 𝑉𝑝3(𝑉) 

0.005 0.1 8.9995035 × 1017 2.071273 1 × 10−3 

 𝐶𝑤3(𝑁. 𝑆 𝑚⁄ ) 𝐶𝑣𝑑𝑤3
 𝐿 (𝑁 𝑚3⁄ ) 𝐶𝑣𝑑𝑤3

 𝑁𝐿 (𝑁 𝑚3⁄ ) 𝑉03 𝑉𝐷𝐶3(𝑉) 

1 × 10−3 9.91866693 × 1019 2.201667 × 1031 1 5 

𝜇𝑓(𝑝𝑎. 𝑠) 𝜌𝑓(𝑘𝑔 𝑚3⁄ ) 𝑢𝑓(𝑚 𝑠⁄ )   

3 × 10−3 1060 50   
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Where the value of the mid-surface radius for different PENS are presented as following:  

for SWPENS: 𝑅 = 𝑅𝑜𝑢𝑡;     for DWPENS: 𝑅1 = 𝑅𝑖𝑛, 𝑅2 = 𝑅𝑜𝑢𝑡;  

and for TWPENS: 𝑅1 = 𝑅𝑖𝑛, 𝑅2 = 𝑅𝑚𝑖𝑑, 𝑅3 = 𝑅𝑜𝑢𝑡. 

 

3-1: Surface/interface effects on DNF respect to viscous fluid velocity and pull-in voltage 

In this section, the effect of surface/interface parameters of fluid-conveying multi walled 

piezoelectric nano-sensor such as Lame’s constants (𝜆𝐼,𝑆, 𝜇𝐼,𝑆), residual stress (𝜏0
𝐼,𝑆), piezoelectric 

constants (𝑒31𝑝
𝑠𝑘 , 𝑒32𝑝

𝑠𝑘 ) and mass density (𝜌𝐼,𝑆) are studied for analysis of dimensionless natural 

frequency respect to viscous fluid velocity �̅�𝑓 and pull-in voltage �̅�𝐷𝐶. For this work, the material and 

geometrical parameters in Tables 1-3 are used. In all following results, in analysis of DNF on viscous 

fluid velocity �̅�𝑓 and pull-in voltage �̅�𝐷𝐶, respectively are used values of �̅�𝐷𝐶 = 5 and �̅�𝑓 = 0.1. 

First, the relationship between the DNF and the different MWPENR length to radius ratio 

𝐿/𝑅1 is shown in Figure 2 for three vibrational modes. This results show for two case of surface 

density corresponding to Table 4 (due to the surface/interface densities play an important role in 

analysis of natural frequency and nonlinear frequency response). 

 

Table 4. Two case of surface density. 

Case 1 Case 2 

𝜌𝐼(𝑘𝑔 𝑚2⁄ ) 𝜌𝑆(𝑘𝑔 𝑚2⁄ ) 𝜌𝐼(𝑘𝑔 𝑚2⁄ ) 𝜌𝑆(𝑘𝑔 𝑚2⁄ ) 

5.46 × 10−7 5.61 × 10−6 5.46 × 10−8 5.61 × 10−7 

 

It is observed that for all modes, the DNF decreases when the 𝐿/𝑅1 ratio increases. Also, 

the DNF for mode 3 is higher than that for modes 1 and 2. It is clear from this Figure that in the 

case of higher surface/interface densities (case 1), the inertia of the shell is increased and its 

stiffness is reduced that leads to decreasing of the DNF compared to case of without S/I effects. 

Also, with decreasing of surface/interface densities (case 2), the inertia of the system is increased 

and with increase of stiffness, DNF increases compared to case of without S/I effects.  
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Fig.2. The surface/ interface effects on DNF versus 𝐿 𝑅1⁄  ratio for three vibrational modes 

 

In all following results, lower surface/interface densities case 2 is used in analysis of DNF on viscous 

fluid velocity �̅�𝑓 and pull-in voltage �̅�𝐷𝐶. 

The effects of viscous fluid velocity �̅�𝑓 and direct pull in voltage DC as pull-in instability analysis on 

the DNF (ω̅𝑛) of FC-MWPENS are presented in Figures 3 and 4 and for different boundary 

conditions. It can be seen that in all boundary conditions, natural frequencies decrease with increasing 

of fluid velocity and voltage DC. Also, due to the system softening in SS boundary condition with 

and without S/I and low natural frequency in this case, FC-MWPENS is at a higher critical fluid 

velocity and lower pull in voltage than other boundary conditions. After SS boundary condition, 

respectively, CS and CC boundary conditions reach the zero due to being softer. For zero natural 

frequency, FC-MWPENS becomes unstable and this physically implies that the FC-MWPENS losses 

its stability due to the divergence via a pitchfork bifurcation. 
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Fig. 3. The effects of different boundary conditions for fluid velocity �̅�𝑓 on DNF of FC-MWPENS 

 

Fig. 4. The effects of different boundary conditions for pull in voltage on DNF of FC-MWPENS 

 

Figures 5 and 6 illustrate the effects of different surface and interface Lame’s constants 𝜆𝑆𝑘 and 𝜆𝐼𝑘 , 

for viscous fluid velocity �̅�𝑓 and pull-in instability analysis on DNF of FC-MWPENS. It is clear that 

increasing both surface/interface Lame’s constants 𝜆𝐼,𝑆, due to increasing of FC-MWPENS stiffness, 

DNF and critical fluid velocity increase and pull in voltage in 𝜆𝐼,𝑆 = 0 and 𝜆𝐼,𝑆 = −2 has maximum 

and minimum value.  

 



14 

  
Fig. 5. The effects of surface/interface Lame’s constants 𝜆𝐼,𝑆 for fluid velocity �̅�𝑓 on DNF of SS 

FC-MWPENS 

 
Fig. 6. The effects of surface/interface Lame’s constants 𝜆𝐼,𝑆 for pull in voltage on DNF of SS FC-

MWPENS 

 

The effects of different surface and interface Lame’s constants 𝜇𝑆𝑘 , and 𝜇𝐼𝑘, for viscous fluid velocity 

�̅�𝑓 and pull-in instability analysis on DNF of FC-MWPENS are presented in Figures 7 and 8. Similar 

to 𝜆𝐼,𝑆, it is clear that increasing both surface/interface Lame’s constants 𝜇𝐼,𝑆, due to increasing of 

FC-MWPENS stiffness, DNF and also critical fluid velocity and pull-in voltage increase.  
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Fig. 7. The effects of surface/interface Lame’s constants 𝜇𝐼,𝑆 for fluid velocity �̅�𝑓 on DNF of SS 

FC-MWPENS 

 
Fig. 8. The effects of surface/interface Lame’s constants 𝜇𝐼,𝑆 for pull in voltage on DNF of SS FC-

MWPENS 

 

Figures 9 and 10 show the effects of surface and interface residual stress 𝜏0
𝑆𝑘 and 𝜏0

𝐼𝑘 , for viscous fluid 

velocity �̅�𝑓 and pull-in instability analysis on DNF of FC-MWPENS. As can be show in both analysis 

of DNF and NDR, increasing both surface/interface residual stress 𝜏0
𝐼,𝑆

 lead to increasing of FC-

MWPENS stiffness and as a result, DNF and pull-in voltage decrease and critical fluid velocity 

increase.  
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Fig. 9. The effects of surface/interface residual stress 𝜏0
𝐼,𝑆

 for fluid velocity �̅�𝑓 on DNF of SS FC-

MWPENS 

 

Fig. 10. The effects of surface/interface residual stress 𝜏0
𝐼,𝑆

 for pull in voltage on DNF of SS FC-

MWPENS 

 

The effect of surface piezoelectricity constants 𝑒31𝑝
𝑠𝑘  and 𝑒32𝑝

𝑠𝑘  for viscous fluid velocity �̅�𝑓 and pull-

in instability analysis on DNF of FC-MWPENS is presented in Figures 11 and 12. It is observed that 

increasing of negative surface piezoelectricity constants 𝑒31𝑝
𝑠𝑘  and 𝑒32𝑝

𝑠𝑘  leads to increasing of the FC-

MWPENS stiffness and as a result, DNF, critical fluid velocity and pull-in voltage increase. 
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Fig. 11. The effects of surface piezoelectricity constants 𝑒31𝑝
𝑠𝑘 , 𝑒32𝑝

𝑠𝑘  for fluid velocity �̅�𝑓 on DNF of 

SS FC-MWPENS 

 

Fig. 12. The effects of surface piezoelectricity constants 𝑒31𝑝
𝑠𝑘 , 𝑒32𝑝

𝑠𝑘  for pull in voltage on DNF of SS 

FC-MWPENS 

Figures 13 and 14 illustrate the effects of surface and interface mass density 𝜌𝑆𝑘  and 𝜌𝐼𝑘 , for viscous 

fluid velocity �̅�𝑓 and pull-in instability analysis on DNF of FC-MWPENS. As it can be seen that with 

increasing surface/interface mass density 𝜌𝐼,𝑆, due to decreasing of the FC-MWPENS stiffness, DNF 

significantly decrease and also critical fluid velocity and pull-in voltage slightly decrease. 
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Fig. 13. The effect of surface 𝜌𝑆 and Interface 𝜌𝐼 mass density for fluid velocity �̅�𝑓 on DNF of SS 

FC-MWPENS 

 
Fig. 14. The effect of surface 𝜌𝑆 and Interface 𝜌𝐼 mass density for pull in voltage on DNF of SS 

FC-MWPENS 

 

In Figure 15 and 16 the effects of all surface and interface parameters for viscous fluid velocity �̅�𝑓 

and pull-in instability analysis on DNF of SS FC-MWPENS are presented It can be seen that with 

ignoring the surface/interface density 𝜌𝐼,𝑆, the inertia of the system will greatly decrease and due to 

increasing of FC-MWPENS stiffness, the system will have a maximum DNF compared to other cases. 

Also when the surface/interface effects are not taken into account, due to decreasing of nanoshell 

stiffness, it has a lower DNF than the case of with all S/I effects. In cases of without all S/I effects, 
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the critical fluid velocity and also pull in voltage, sooner than the rest parameters are reached to be 

zero and in cases of without surface/interface density 𝜌𝐼,𝑆 and with all S/I effects respectively, pull in 

voltage and critical fluid velocity later than the rest parameters are reached to be zero and system 

losses its stability due to the divergence via a pitchfork bifurcation. 

 
Fig. 15. The effects of surface and interface parameters for fluid velocity �̅�𝑓 on DNF of SS FC-

MWPENS 

 
Fig. 16. The effects of surface and interface parameters for pull in voltage on DNF of SS FC-

MWPENS 

 

 

4. Conclusion 
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In current study, the effect of surface/interface parameters of fluid-conveying multi walled 

piezoelectric nano-sensor such as Lame’s constants (𝜆𝐼,𝑆, 𝜇𝐼,𝑆), residual stress (𝜏0
𝐼,𝑆), piezoelectric 

constants (𝑒31𝑝
𝑠𝑘 , 𝑒32𝑝

𝑠𝑘 ) and mass density (𝜌𝐼,𝑆) are studied for analysis of dimensionless natural 

frequency respect to viscous fluid velocity �̅�𝑓 and pull-in voltage �̅�𝐷𝐶. The piezoelectric nano-sensor 

is simultaneously subjected to direct electrostatic voltage DC with nonlinear excitation, nonlinear van 

der Waals force and viscoelastic foundation. For this purpose, Hamilton’s principles, the assumed 

mode method combined with Lagrange–Euler’s are used. The validation of the mention system is 

achieved with excellent agreements by comparisons with numerical results. Some conclusions are 

obtained from this study: 

 in the case of higher (lower) surface/interface densities, the inertia of the shell is increased 

(decreased) and its stiffness is reduced (increase) that leads to decreasing (increasing) of the 

natural frequency compared to case of without S/I effects.  

 for all modes, the DNF decreases when the 𝐿/𝑅1 ratio increases. Also, the DNF for mode 3 is 

higher than that for modes 1 and 2. 

 in all boundary conditions, natural frequencies decrease with increasing of fluid velocity and 

voltage DC. Also, due to the system softening in SS boundary condition and low natural 

frequency in this case, FC-MWPENS is a higher critical fluid velocity and lower pull in voltage 

than other boundary conditions.  

 increasing both surface/interface Lame’s constants 𝜆𝐼,𝑆, due to increasing of FC-MWPENS 

stiffness, DNF and critical fluid velocity increase and pull in voltage in 𝜆𝐼,𝑆 = 0 and 𝜆𝐼,𝑆 = −2 

has maximum and minimum value.  

 increasing both surface/interface Lame’s constants 𝜇𝐼,𝑆, due to increasing of FC-MWPENS 

stiffness, DNF and also critical fluid velocity and pull-in voltage increase. 

 in both analysis of DNF and NDR, increasing both surface/interface residual stress 𝜏0
𝐼,𝑆

 lead to 

increasing of FC-MWPENS stiffness and as a result, DNF and pull-in voltage decrease and 

critical fluid velocity increase. 

 increasing of negative surface piezoelectricity constants 𝑒31𝑝
𝑠𝑘  and 𝑒32𝑝

𝑠𝑘  leads to increasing of the 

FC-MWPENS stiffness and as a result, DNF, critical fluid velocity and pull-in voltage increase. 

 increasing surface/interface mass density 𝜌𝐼,𝑆, due to decreasing of the FC-MWPENS stiffness, 

DNF significantly decrease and also critical fluid velocity and pull-in voltage slightly decrease. 

 with ignoring the surface/interface density 𝜌𝐼,𝑆, the system will have a maximum DNF compared 

to other cases.  

 when the surface/interface effects are not taken into account, it has a lower DNF than the case of 

with all S/I effects.  

 In cases of without all S/I effects, the critical fluid velocity and also pull in voltage, sooner than 

the rest parameters are reached to be zero and in cases of without surface/interface density 𝜌𝐼,𝑆 

and with all S/I effects respectively, pull in voltage and critical fluid velocity later than the rest 

parameters are reached to be zero. 
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Appendix 1 

(𝑀)𝑢𝑛
𝑢 =∬ (𝜒𝑒𝜒𝑖𝜗𝑓𝜗𝑗)𝑑𝜉 𝑑𝜃 , (𝐾)𝑢𝑛

𝑢 =∬ (α1𝑛χe
′ χi
′𝜗𝑓𝜗𝑗 + α2𝑛𝜒𝑒𝜒𝑖𝜗𝑓

′𝜗𝑗
′)𝑑𝜉 𝑑𝜃, 

(𝐾)𝑢𝑛
𝑣 =

1

2
∬ (α3𝑛χe

′𝜙𝑘𝜗𝑓𝛼𝑙
′ + α4𝑛𝜒𝑒𝜙𝑘

′ 𝜗𝑓
′𝛼𝑙)𝑑𝜉 𝑑𝜃 , (𝐾)𝑢𝑛

𝑤 =
1

2
∬ (α5𝑛χe

′𝛽𝑜𝜗𝑓𝜓𝑙)𝑑𝜉 𝑑𝜃, 

(𝑁𝐿)𝑢𝑛
𝑤 =

1

2
∬ (α6𝑛χe

′𝛽0
′𝛽𝑡

′𝜗𝑓𝜓𝑝𝜓𝑣 + α7𝑛χe
′𝛽𝑜𝛽𝑡𝜗𝑓𝜓𝑝

′𝜓𝑣
′ + α8𝑛𝜒𝑒𝛽0

′𝛽𝑡𝜗𝑓
′𝜓𝑝𝜓𝑣

′ )𝑑𝜉 𝑑𝜃, 

�̅�𝑢𝑝𝑛 =
1

2
∬ (α26𝑛χe

′ 𝜗𝑖)𝑑𝜉 𝑑𝜃, (𝑀)𝑣𝑛
𝑣 =∬ (𝜙𝑞𝜙𝑘𝑎𝑓𝑎𝑙)𝑑𝜉 𝑑𝜃 

(𝐾)𝑣𝑛
𝑢 =

1

2
∬ (α3𝑛𝜙𝑞χi

′𝛼𝑓
′𝜗𝑙 + α4𝑛𝜙𝑞

′𝜒𝑖𝛼𝑓𝜗𝑙
′)𝑑𝜉 𝑑𝜃,  

(𝐾)𝑣𝑛
𝑣 =∬ (α9𝑛𝜙𝑞𝜙𝑘𝛼𝑓

′𝛼𝑙
′ + α13𝑛𝜙𝑞

′𝜙𝑘
′ 𝛼𝑓𝛼𝑙)𝑑𝜉 𝑑𝜃, 

(𝐾)𝑣𝑛
𝑤 =

1

2
∬ (α12𝑛𝜙𝑞𝛽𝑜𝛼𝑓

′𝜓𝑙)𝑑𝜉 𝑑𝜃,  

(𝑁𝐿)𝑣𝑛
𝑤 =

1

2
∬ (α10𝑛𝜙𝑞𝛽𝑜𝛽𝑡𝛼𝑔

′𝜓𝑝
′𝜓𝑣

′+α11𝑛𝜙𝑞𝛽0
′𝛽𝑡

′𝛼𝑔
′𝜓𝑝𝜓𝑣 + α14𝑛𝜙𝑞

′𝛽0
′𝛽𝑡𝛼𝑔𝜓𝑝𝜓𝑣

′ )𝑑𝜉 𝑑𝜃, 

�̅�𝑣𝑝𝑛 =
1

2
∬ (α27𝑛𝜙𝑞𝛼𝑓

′)𝑑𝜉 𝑑𝜃,  

(𝑀)𝑤𝑛
𝑤 =

1

2
∬ (2𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝 + 𝛼32𝑛𝛽𝑟

′′𝛽𝑜𝜓𝑠𝜓𝑝 + α33𝑛𝛽𝑟𝛽𝑜𝜓𝑠
′′𝜓𝑝 + �̅�1𝑛𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝)𝑑𝜉 𝑑𝜃,  

(𝐶)𝑤𝑛
𝑤 =

1

2
∬ (𝐶�̅�𝑛𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝 + �̅�2𝑛𝛽𝑟𝛽𝑜

′𝜓𝑠𝜓𝑝 − �̅�1𝑛𝛽𝑟𝛽𝑜
′′𝜓𝑠𝜓𝑝 − �̅�2𝑛𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝

′′)𝑑𝜉 𝑑𝜃, 

(𝐾)𝑤𝑛
𝑢 =

1

2
∬ (α5𝑛𝛽𝑟χi

′𝜓𝑠𝜗𝑗)𝑑𝜉 𝑑𝜃, 

(𝐾)𝑤𝑛
𝑣 =

1

2
∬ (α12𝑛𝛽𝑟𝜙𝑘𝜓𝑠𝛼𝑙

′)𝑑𝜉 𝑑𝜃, 

(𝐾)𝑤𝑛
𝑤 =

1

2
∬

(

 
 
 

2α15𝑛𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝 + 2α21𝑛𝛽𝑟
′′𝛽0

′′𝜓𝑠𝜓𝑝 + 2α22𝑛𝛽𝑜𝛽𝑟𝜓𝑠
′′𝜓𝑝

′′

+2α23𝑛𝛽𝑟
′𝛽𝑜

′𝜓𝑠
′𝜓𝑝

′ + α24𝑛𝛽𝑟𝛽𝑜
′′𝜓𝑠

′′𝜓𝑝 + α24𝑛𝛽𝑟
′′𝛽𝑜𝜓𝑠𝜓𝑝

′′

+2α28𝑛𝛽𝑟
′𝛽𝑜

′𝜓𝑠𝜓𝑝 + �̅�𝑤𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝 − �̅�𝑝𝛽𝑟𝛽0
′′𝜓𝑠𝜓𝑝

−�̅�𝑝𝑚0
2𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝

′′ − �̅�𝑒2(𝐾𝑒)𝑤
𝑤

+�̅�3𝑛𝛽𝑟𝛽0
′′𝜓𝑠𝜓𝑝 − �̅�3𝑛𝛽𝑟𝛽0

′′′𝜓𝑠𝜓𝑝 − �̅�4𝑛𝛽𝑟𝛽0
′𝜓𝑠𝜓𝑝

′′ )

 
 
 
𝑑𝜉 𝑑𝜃, 

(𝐾𝑒)𝑤𝑛
𝑤 = 𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝, 

(𝐾)𝑤𝑖𝑛
𝑣𝑑𝑤 =

1

2
∬ (𝛽𝑟𝛽𝑜𝜓𝑠𝜓𝑝)𝑑𝜉 𝑑𝜃, 𝑖 = 1…4, 

(𝑁𝐿)𝑤𝑛
𝑢 =

1

2
∬ (

2α6𝑛𝛽𝑟
′𝛽𝑜

′χi
′𝜓𝑠𝜓𝑝𝜗𝑗 + 2α7𝑛𝛽𝑟𝛽𝑜χi

′𝜓𝑠
′𝜓𝑝

′ 𝜗𝑗
+α8𝑛𝛽𝑟

′𝛽𝑜𝜒𝑖𝜓𝑠𝜓𝑝
′𝜗𝑗

′ + α8𝑛𝛽𝑟𝛽𝑜
′𝜒𝑖𝜓𝑠

′𝜓𝑝𝜗𝑗
′)𝑑𝜉 𝑑𝜃,  
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(𝑁𝐿)𝑤𝑛
𝑣 =

1

2
∬ (

2α10𝑛𝛽𝑟𝛽𝑜𝜙𝑘𝜓𝑠
′𝜓𝑝

′𝛼𝑙
′ + 2α11𝑛𝛽𝑟

′𝛽𝑜
′𝜙𝑘𝜓𝑠𝜓𝑝𝛼𝑙

′

+α14𝑛𝛽𝑟
′𝛽𝑜𝜙𝑘

′𝜓𝑠𝜓𝑝
′𝛼𝑙 + α14𝑛𝛽𝑟𝛽𝑜

′𝜙𝑘
′𝜓𝑠

′𝜓𝑝𝛼𝑙
)𝑑𝜉 𝑑𝜃,  

(𝑁𝐿)𝑤2𝑛
𝑤 =

1

2
∬ (

α19𝑛𝛽𝑟𝛽𝑜
′𝛽𝑡

′𝜓𝑠𝜓𝑝𝜓𝑣 + 2α19𝑛𝛽𝑟
′𝛽𝑜

′𝛽𝑡𝜓𝑠𝜓𝑝𝜓𝑣 + α20𝑛𝛽𝑟𝛽𝑜𝛽𝑡𝜓𝑠𝜓𝑝
′𝜓𝑣

′

+2α20𝑛𝛽𝑟𝛽𝑜𝛽𝑡𝜓𝑠
′𝜓𝑝

′𝜓𝑣 − �̅�𝑒3(𝑁𝐿2𝑒)𝑤
𝑤 )𝑑𝜉 𝑑𝜃 , 

(𝑁𝐿2𝑒)𝑤𝑛
𝑤 = 𝛽𝑟𝛽𝑜𝛽𝑡𝜓𝑠𝜓𝑝𝜓𝑣, 

(𝑁𝐿)𝑤3𝑛
𝑤 =

1

2
∬ (

4α16𝑛𝛽𝑟
′𝛽𝑜

′𝛽𝑡
′𝛽𝑎
′𝜓𝑠𝜓𝑝𝜓𝑣𝜓𝑏 + 4α17𝑛𝛽𝑟𝛽𝑜𝛽𝑡𝛽𝑎𝜓𝑠

′𝜓𝑝
′𝜓𝑣

′𝜓𝑏
′

+2α18𝑛𝛽𝑟
′𝛽𝑜

′𝛽𝑡𝛽𝑎𝜓𝑠𝜓𝑝𝜓𝑣
′𝜓𝑏

′ + 2α18𝑛𝛽𝑟𝛽𝑜𝛽𝑡
′𝛽𝑎
′𝜓𝑠

′𝜓𝑝
′𝜓𝑣𝜓𝑏

−�̅�𝑒4(𝑁𝐿3𝑒)𝑤
𝑤

)𝑑𝜉 𝑑𝜃  

(𝑁𝐿3𝑒)𝑤𝑛
𝑤 = 𝛽𝑟𝛽𝑜𝛽𝑡𝛽𝑎𝜓𝑠𝜓𝑝𝜓𝑣𝜓𝑏 

(𝑁𝐿)𝑤𝑖𝑛
𝑣𝑑𝑤 =

1

2
∬ (𝛽𝑟𝛽𝑜𝛽𝑡𝛽𝑎𝜓𝑠𝜓𝑝𝜓𝑣𝜓𝑏)𝑑𝜉𝑑𝜃 , 𝑖 = 1…4, 

�̅�𝑤𝑝 =
1

2
∬ (α25𝛽𝑟𝜓𝑠 + α30𝛽𝑟

′′𝜓𝑠 + α31𝛽𝑟𝜓𝑠
′′)𝑑𝜉 𝑑𝜃, �̅�1 =∬ (𝛽𝑟𝜓𝑠)𝑑𝜉 𝑑𝜃 ,   

�̅�𝑒1 =
1

2
�̅�𝑒�̅�1,   �̅�𝑒𝐷𝐶 =

1

2
�̅�𝑒�̅�𝐷𝐶

2 , �̅�𝑤𝑒 = 𝐶1̅�̅�𝑒𝐷𝐶�̅�1,   �̅�𝑒2 = 𝐶2̅�̅�𝑒𝐷𝐶 , �̅�𝑒3 = 𝐶3̅�̅�𝑒𝐷𝐶 , �̅�𝑒4 = 𝐶4̅�̅�𝑒𝐷𝐶 , 

 

Appendix 2 

𝛼1𝑛 =
1

𝑚3𝑛
�̅�11𝑛,  𝛼2𝑛 =

𝑚0𝑛
2

𝑚3𝑛
�̅�66𝑛,  𝛼3𝑛 =

𝑚0𝑛

𝑚3𝑛

(�̅�12𝑛 + �̅�21𝑛), 𝛼4𝑛 =
2𝑚0𝑛

𝑚3𝑛
�̅�66𝑛, 

 𝛼5𝑛 =
𝑚0𝑛

𝑚3𝑛

(�̅�12𝑛 + �̅�21𝑛), 𝛼6𝑛 =
1

𝑚1𝑛𝑚3𝑛
(�̅�11𝑛 − 𝜏0̅𝑛

𝑝𝑠 − 𝜏0̅𝑛
𝑁𝐼),  𝛼7𝑛 =

𝑚0𝑛𝑚2𝑛

2𝑚3𝑛

(�̅�12𝑛 + �̅�21𝑛), 

 𝛼8𝑛 =
2𝑚0𝑛𝑚2𝑛

𝑚3𝑛
�̅�66𝑛,  𝛼9𝑛 =

𝑚0𝑛
2

𝑚3𝑛
�̅�22𝑛,  𝛼10𝑛 =

𝑚0𝑛
2 𝑚2𝑛

𝑚3𝑛
(�̅�22𝑛 − 𝜏0̅𝑛

𝑝𝑠 − 𝜏0̅𝑛
𝑁𝐼), 

𝛼11𝑛 =
𝑚2𝑛

2𝑚3𝑛

(�̅�12𝑛 + �̅�21𝑛),  𝛼12𝑛 =
2𝑚0𝑛

2

𝑚3𝑛
(�̅�22𝑛 − 𝜏0̅𝑛

𝑝𝑠 − 𝜏0̅𝑛
𝑁𝐼), 𝛼13𝑛 =

1

𝑚3𝑛
�̅�66𝑛, 

 𝛼14𝑛 =
2𝑚2𝑛

𝑚3𝑛
�̅�66𝑛,  𝛼15𝑛 =

𝑚0𝑛
2

𝑚3𝑛
(�̅�22𝑛 − 2(𝜏0̅𝑛

𝑝𝑠 + 𝜏0̅𝑛
𝑁𝐼)) ,  𝛼16𝑛

=
1

4𝑚1𝑛
2 𝑚3𝑛

(�̅�11𝑛 − 2(𝜏0̅𝑛
𝑝𝑠 + 𝜏0̅𝑛

𝑁𝐼)), 

 𝛼17𝑛 =
𝑚0𝑛
2 𝑚2𝑛

2

4𝑚3𝑛
(�̅�22𝑛 − 2(𝜏0̅𝑛

𝑝𝑠 + 𝜏0̅𝑛
𝑁𝐼)) , 𝛼18𝑛 =

𝑚2𝑛
2

4𝑚3𝑛

(4�̅�66𝑛 + �̅�12𝑛 + �̅�21𝑛), 

  𝛼19𝑛 =
𝑚2𝑛

2𝑚3𝑛

(�̅�12𝑛 + �̅�21𝑛), 𝛼20𝑛 =
𝑚0𝑛
2 𝑚2𝑛

𝑚3𝑛
(�̅�22𝑛 − 2(𝜏0̅𝑛

𝑝𝑠 + 𝜏0̅𝑛
𝑁𝐼)), 

𝛼21𝑛 =
1

𝑚1𝑛
2 𝑚3𝑛

(�̅�11𝑛 − �̅�11𝑛),  𝛼22𝑛 =
𝑚0𝑛
2 𝑚2𝑛

2

𝑚3𝑛

(�̅�22𝑛 − �̅�11𝑛),  𝛼23𝑛 =
4𝑚2𝑛

2

𝑚3𝑛
�̅�66𝑛,  

𝛼24𝑛 =
𝑚2𝑛
2

𝑚3𝑛

(�̅�12𝑛 + �̅�21𝑛 − 2�̅�11𝑛), 𝛼25𝑛 =
𝑚0𝑛𝑚1𝑛

𝑚3𝑛
(2(𝜏0̅𝑛

𝑝𝑠 + 𝜏0̅𝑛
𝑁𝐼) − �̅�𝜃𝑝𝑛), 

𝛼26𝑛 =
𝑚1𝑛

𝑚3𝑛
(2(𝜏0̅𝑛

𝑝𝑠 + 𝜏0̅𝑛
𝑁𝐼) − �̅�𝑥𝑝𝑛), 𝛼27𝑛 =

𝑚0𝑛𝑚1𝑛

𝑚3𝑛
(2(𝜏0̅𝑛

𝑝𝑠 + 𝜏0̅𝑛
𝑁𝐼) − �̅�𝜃𝑝𝑛), 

𝛼28𝑛 =
1

2𝑚3𝑛
(2(𝜏0̅𝑛

𝑝𝑠 + 𝜏0̅𝑛
𝑁𝐼) − �̅�𝑥𝑝𝑛), 𝛼29𝑛 =

𝑚0𝑛
2

2𝑚3𝑛
(2(𝜏0̅𝑛

𝑝𝑠 + 𝜏0̅𝑛
𝑁𝐼) − �̅�𝜃𝑝𝑛), 

𝛼30𝑛 =
1

𝑚3𝑛
�̅�𝑥𝑝𝑛, 𝛼31𝑛 =

𝑚0𝑛
2

𝑚3𝑛
�̅�𝜃𝑝𝑛, 𝛼32𝑛 =

1

2𝑚1𝑛
2 𝑚3𝑛

�̅�11𝑛
∗ , 𝛼33𝑛 =

𝑚2𝑛
2

2𝑚3𝑛
�̅�11𝑛
∗ , 
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