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Abstract  

 

This article proposes the numerical model to investigate the impact of the radiation effects in the presence 

of heat generation/absorption and the magnetic field on the magnetohydrodynamics (MHD) stagnation 

point flow past a radially stretching sheet using the Casson nanofluid. The non-linear partial differential 

equations describing the proposed flow problem are reduced to a set of ordinary differential equations 

(ODEs) via suitable similarity transformations. The shooting technique has been used to obtain the 

numerical results with the help of the computational program language FORTRAN. The effects of 

pertinent flow parameters on the non-dimensional velocity, temperature and concentration profiles are 

presented in tables and graphs. From the results, it has been remarked that the heat transfer rate escalates 

for the larger values of the radiation parameter for the Casson nanofluid.  

 

Keywords: Casson nanofluid, thermal radiation, MHD, Stagnation point, Nanoparticles.  

 

1. Introduction 

Heat transfer mechanism has been known for its great importance in many 

engineering and medical sciences for last many decades. Due to enormous benefits of 

heat energy for mankind, the field of thermodynamics is effectively linked with other 

disciplines. Heat transport process is imparting its noteworthy role in building 

designing [1], fuel filling system [2], air compressor [3], food industry [4], and in many 

other fields. In this regard fluid dynamics is playing an important role in thermal energy 

management by the usage of different fluids having good thermophysical properties. 

Researchers are emphasizing on different factors which are important for the 

augmentation of thermal process like involvement of porous medium, open and close 

cavities, implementation of magnetic effects, nanofluids, micro sized channel, etc., to 

enhance the thermal convection process. Choi in [5] has used the term nanofluid for the 

first time, which is the colloidal mixture of nanoparticles and base fluid. Most of the 

research has shown that metallic particles transfer more heat energy as compared to 

non-metallic particles. 

Casson fluid, being non-Newtonian in nature, exhibits behavior of elastic solids. 

When stress rate is zero, the Casson fluid can be regarded as a shear thinning liquid, 

showing an infinite viscosity whereas the viscosity drops to zero as the stress rate 

approaches to an infinite value [6]. Jam, tomato ketchup, honey and concentrated fruit 

syrups are some familiar examples of the Casson fluid. The Casson fluid has been 

implemented in the preparation of printing ink, silicon suspensions and polymers [7]. 

During the past few years, a vast range of experiments and investigations have been 

carried out using the Casson fluid due to its enormous applications in the scientific and 

engineering domains. Dash et al. [6] examined the flow using a homogeneous porous 

medium inside a pipe for the Casson fluid. The stagnation point flow for mixed 

convection and convective boundary conditions using the Casson fluid was analyzed 
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by Hayat et al. [8]. Further to this, Mukhopadhyay et al. [9] investigated the flow past 

an unsteady stretching surface using the Casson fluid. Moreover, different aspects of 

such flows using the Casson fluid are presented in the recent studies [10-14]. 

The area of the magnetic properties of electrically conducting fluids is called 

Magnetohydrodynamics (MHD). Megantic fluids, liquids, metals, salt, water and 

electrolytes are the examples of MHD. Hannes Alfen introduced the word MHD. MHD 

is the sequence of Navier -stokes equations and Maxwell equations of electromagnetism 

is discussed by Chakraborty et al. [15]. Shah et al. [16] discussed the MHD effects and 

heat transfer for the UCM fluid along with Joule heating and thermal radiation using 

the Cattaneo-Christov heat flux model. Hayat et al. [17] clarified the mass exchange 

and MHD flow of an upper convected Maxwell fluid with an extended sheet. Ibrahim 

and Suneetha [18] studied the effects of Joule heating and viscous dissipation on steady 

MHD Marangoni convective flow over a at surface in the presence of radiation. 

The point in the flow field where the fluid's velocity is zero is called stagnation 

point. The study of viscous, incompressible, fluid past a permeable plate or sheet has 

great importance in the field of fluid dynamics. During the past few decades, the work 

on stagnation point ow of an incompressible fluid past a permeable sheet has got 

significant importance because of its large number of applications in manufacturing 

industries. Some of the main applications are refrigeration of electrical gadgets by fan, 

atomic receptacles cooling for the duration of emergency power cut, solar receiver, etc. 

The study of two-dimensional (2D) stagnation point ow was first investigated by 

Hiemenz [19], whereas for getting the accurate solution, Eckert [20] extended this 

problem by adding the energy equation. In view of that Mahapatra and Gupta [21], 

Ishak et al. [22], and Hayat et al. [23] have studied the effcts of heat transfer in 

stagnation point over a permeable plate. 

Moreover, an analysis of the flow using the radially stretching surfaces for the 

nanofluids, has many significant applications in the industrial sectors, for instance, 

drawing of plastic films, manufacturing of glass, production of paper and refining of 

crude oil. In addition to this, the implementation of the nanotechnology has been an aim 

of the recent analysis by many scholars because the nanoparticles exhibit remarkable 

electrical, optical, chemical behavior and due to their Brownian motion and 

thermophoresis properties. Owing to such features, the nanoparticles are widely used 

in catalysis, imaging, energy-based research, microelectronics, medical and 

environmental applications. These particles are composed of metals or non-metals. On 

top of that, latest investigations have made the infusion of nanoparticles, practicable in 

heat transfer fluids most notably water, diethylene glycol and propylene glycol to 

convert them into a more efficient category of heat transfer fluids [5]. 

Motivated by the formerly findings on the non-Newtonian and Newtonian fluids, 

the study of stagnation point MHD flow using the Casson nanofluids has been 

presented. The governing PDEs have been converted to a set of ODES through suitable 

similarity transformations and the numerical solution has been derived by the shooting 

method. 

  

2. Mathematical Modelling 

 

The present model aims to investigate the laminar, incompressible and steady flow 

of the Casson nanofluid past a radially stretched surface in proximity of a stagnation 

point. In the light of thermal radiation and heat generation/absorption, the 

characteristics of ow and heat transfer are examined. The coordinate system is chosen 

in a manner that r  axis is along the flow whereas z  axis is perpendicular to the flow. 
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The velocity of the outer flow is taken as 
eU . Furthermore, the direction of the uniform 

magnetic field is chosen in such a manner that it is normal to the surface of the fluid 

flow. The effects of Brownian motion and thermophoresis have been elaborated. 

Moreover, the convective surface conditions have been taken into consideration. The 

constitutive equations of the Casson nanofluid model are as follow [10-14] 
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Figure 2.1: Schematic of physical model 

The corresponding boundary conditions at the boundary surface are 
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     , 0, ,w f h f B s f
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The following similarity variables are taken into consideration. 
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The Rosseland approximation has been considered for radiation and the formulae for 

the radiative heat flux rq  is stated below. 
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For smaller value of temperature contrast, the temperature difference 4T  might be 

expanded about T  using Taylor series, as follows: 
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Using Eq. (7) in Eq. (6) and differentiating, we have the following form: 

* 3 2

* 2

16
,

3

rq T T

z k z

  
 

 
              (8) 

Finally, the ODEs describing the proposed flow problem can be re-collected in the 

following system. 
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The transformed boundary conditions are stated below.
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The dimensionless parameters are defined as 
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The formulae for the dimensional form of skin-friction coefficient, Nusselt number and 

Sherwood number are as follows: 
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Given below are the formulae for w , wq  and mq . 
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The transformation of the above formulae into the dimensionless form has been carried 

out as: 
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3. Solution Methodology 

In order to solve the system of ODEs (9)-(11) subject to the boundary conditions 

(12), the shooting technique has been used. Primarily equation (9) is solved numerically 

and then the computed results of 
',f f and 

"f are used in equations (10)-(11). For the 

numerical treatment of equation (9), the missing initial condition  " 0f  has been 

denoted as s and the following notations have been considered. 
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Using the above notations, equation (9) can be converted into a system of three first 

order ODEs. First three of the following ODEs correspond to (9) and the other three are 

obtained by differentiating the first three w.r.t s . 
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The Adams – Bashforth Moulton method has been used to solve the above initial value 

problem. In order to get the approximate numerical results, the problem's domain is 

bounded i.e. 0, , where  is chosen to be an appropriate finite positive real number 

in such a way that the variation in the solution for    is ignorable. The missing 

condition for the above system of equations is to be chosen such that   2 s
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This algebraic equation has been solved by using the Newton's method governed by the 

following iterative formula. 
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The stopping criteria for the shooting method is set as 
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for some very small positive number  . 

Now to solve equations (10) and (11) numerically, the missing initial conditions  0  

and  0  have been denoted by l  and m , respectively. Thereby the following 

notations have been taken into account. 
'

' ' "

1 2 3 4 5 6 7

' ' '

8 9 10 11 12

, , , , , ,

.

, , , , .

y y y y y y y
l l l

y y y y y
l m m m m

  
   

    

  
         


         

     

             (20) 

Incorporating the above notations, a system of first order ODEs is achieved that is stated 

below. 
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The Adams-Bashforth Moulton method has been taken into consideration for solving 

the above initial value problem. For the above system of equations, the missing 

conditions are to be chosen such that 
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The above algebraic equations have been solved by using the Newton's method 

governed by the following iterative formula: 
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The stopping criteria for the shooting method is set as: 

 

    1 3max , ,y y                       (22) 

for some very small positive number  . Throughout this chapter   has been taken 

as 510  whereas   is set as 7 . 

4. Results and Discussion 
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In this section, the numerical results of skin-friction coefficient, Nusselt and Sher-wood 

numbers are illustrated with tables and graphs by assuming different values of pertinent 

flow parameters of interest. The admissible ranges of involved physical parameters are 

0 2,0.3 2.5,0.1 1.5,0.3 Pr 2.0,0.5 2.5,0.1 0.5,

0.1 0.5,0.3 0.6,0.1 2.0,0.1 2.0,0.1 2,0,

1 1 2.0,0.1 2 2.0

M A Ec R

Q Sc Nt Nb

Bi Bi





           

         

   

 

 

4.1 Skin-friction Coefficient, Nusselt and Sherwood Numbers 

To validate the computational program language Fortran code, the results of  " 0f  

and  ' 0  are reproduced for the problem discussed by Attia [24]. Tables 4.1-3.4 

reflect an excellent agreement between the results computed by the present code and 

those already published in the relevant articles. 

Table 4.5 discloses the numerical results of skin-friction coefficient along with Nus-

selt and Sherwood numbers for the present model in regards to a change in the values 

of various parameters like , , , , Pr, , , ,M R A Q Nb Nt Ec  and .Sc  

Table 4.1: Comparison of the computed values of  " 0f  with those given by Attia 

[24] when 0Nt Nb R Ec Sc     . 

M  A   " 0f  M  A   " 0f  

Attia Present Attia Present 

0 0.1 -1.1246 -1.1246260 2 0.1 -2.1138 -2.1137140 

 0.2 -1.0556 -1.0555810  0.2 -1.9080 -1.9079860 

 0.5 -0.7534 -0.7534078  0.5 -1.2456 -1.2455380 

 1.0 0.0000 0 .0000000  1.0 0.0000 0.0000000 

 1.1 0.1821 0.1820637  1.1 0.2691 0.2690781 

 1.2 0.3735 0.3735214  1.2 0.5445 0.5445290 

 1.5 1.0009 1.0008780  1.5 1.4080 01.4080270 

1 0.1 -1.4334 -1.4334070 3 0.1 -2.9174 -2.9173560 

 0.2 -1.3179 -1.3178900  0.2 -2.6141 -2.6140730 

 0.5 -0.9002 -0.9001369  0.5 -1.6724 -1.6723740 

 1.0 0.0000 0.0000000  1.0 0.0000 0.0000000 

 1.1 0.2070 0.2070196  1.1 0.3494 0.3494373 

 1.2 0.4004 0.4223360  1.2 0.7037 0.7037439 

 1.5 1.1157 1.1156770  1.5 1.7954 1.7954280 

Table 2: Comparison of the computed results of Nusselt number  ' 0  with those 

given by Attia [24] when 0Nt Nb R Ec Sc     . 

Pr  A  
 ' 0  

Pr  A  
 ' 0  

Attia Present Attia Present 

0.05 0.1 0.1273 0.166529400 0.5 0.1 0.4691 0.476318600 

 0.2 0.1421 0.175023100  0.2 0.5223 0.526475900 

 0.5 0.1845 0.201851100  0.5 0.6345 0.633877500 

 1.0 0.2439 0.247389100  1.0 0.7699 0.764000400 

 1.1 0.2545 0.256288100  1.1 0.7933 0.786525000 

 1.2 0.2632 0.265061900  1.2 0.8136 0.808239000 

 1.5 0.2919 0.290530900  1.5 0.8793 0.849610600 
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0.1 0.1 0.1618 0.194615100 1 0.1 0.7657 0.772774200 

 0.2 0.1911 0.212448800  0.2 0.8152 0.818562500 

 0.5 0.2615 0.265139300  0.5 0.9332 0.929409300 

 1.0 0.3343 0.342184300  1.0 1.0888 1.077056000 

 1.1 0.3581 0.355768200  1.1 1.1166 1.103455000 

 1.2 0.3700 0.368815700  1.2 1.1408 1.129085000 

 1.5 0.4080 0.405144700  1.5 1.2200 1.202041000 

Table 3: The computed results of skin-friction coefficient, Nusselt and Sherwood 

numbers for 1, 1 0.1 2Bi Bi    , where 1

1
1a



 
  
 

and 2

4
1

3
a R

 
  
 

. 

  M  A  R  Pr  Q  Nb  Nt  Ec  Sc   "

1 0a f   '

2 0a    ' 0  

0.5 1.0 0.1 0.1 0.7 0.1 0.5 0.1 0.1 1.2 2.485303 0.0859357 0.0939868 

5.0          1.570312 0.0860365 0.0937332 

10          1.503451 0.0859404 0.0937079 

 1.2         2.688387 0.083406 0.0940580 

 1.4         2.911371 0.0805399 0.0941407 

  0.3        2.0619300 0.0913473 0.0938944 

  0.5        1.5593120 0.0942490 0.0938664 

   0.2       2.4853030 0.0954124 0.0939689 

   0.3       2.4853030 0.1047357 0.0939546 

    1.0      2.4853030 0.0871634 0.0940612 

    2.0      2.4853030 0.0874003 0.0942927 

     0.5     2.4853030 0.0688995 0.0944750 

     0.7     2.4853030 0.1130105 0.0935984 

      0.7    2.4853030 0.0858337 0.0939400 

      0.8    2.4853030 0.0857826 0.0939254 

       0.2   2.4853030 0.0858089 0.0941674 

       0.3   2.4853030 0.0856807 0.0943550 

        0.5  2.4853030 0.0366119 0.0959349 

        1.0  2.4853030 -0.025837 0.0983850 

         1.4 2.4853030 0.0859497 0.0944484 

         1.6 2.4853030 0.0859616 0.0948187 

Table 4: The computed results of skin-friction coefficient, Nusselt and Sherwood 

numbers for 0.5, 1, 0.1, 0.1,Pr 0.7,M A R      0.1, 0.1, 0.5,Q Nt Nb    

0.1, 1.2,Ec Sc   where 1

1
1a



 
  
 

and 2

4
1

3
a R

 
  
 

. 

  1Bi  2Bi   "

1 0a f   '

2 0a    ' 0  

1.0 0.1 0.1 2.485303 0.0859357 0.0939868 

1.5   2.485303 0.0859589 0 .0946673 

2.0   2.485303 0.0859759 0 .0951565 

 0.2  2.485303 0.1514275 0.0937815 

 0.3  2.485303 0.2029085 0 .0936212 

  0.2 2.485303 0.0857094 0 .1770382 

  0.3 2.485303 0.0855062 0 .2509579 

4.2 The Velocity, Temperature and Concentration 

Figures 4.2-4.4 present the impact of the magnetic parameter on the velocity, 

temperature and concentration distributions. The larger estimation of M decelerate the 
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velocity and escalate the temperature and concentration of the fluid. This stems from 

the fact that an opposing force is generated by the magnetic field, generally referred as 

the Lorentz force, which depresses the motion of the fluid resulting in a decrement in 

the momentum boundary layer thickness and heightens the thermal and concentration 

boundary layer thickness. 

Figures 4.5-4.7 are delineated to show the effect of A  on the velocity, temperature 

and concentration distributions. An enhancement in the flow velocity has been observed 

for 1A  . On the other hand, the velocity reduces for the case 1A  . Also, both the 

temperature and concentration profiles decrease when A  assumes the larger value. As 

the value of A  heightens, the heat transfer from the sheet to the fluid becomes smaller 

and as a result, the temperature falls significantly. Furthermore, the thermal boundary 

layer thickness is reduced. Moreover, the concentration boundary layer thickness also 

shows a declining behaviour. 

Figures 4.8-4.10 are framed to delineate the effect of Casson parameter on the 

velocity, temperature and concentration fields. The velocity profile shows an in-

creasing trend by increasing  . Additionally, the velocity boundary layer thickness 

undergoes a decrement as   assumes the larger value. This stems from the fact that the 

plasticity of the Casson fluid increases for the smaller   and leads to an enhancement 

in the momentum boundary layer thickness. Also, the temperature distribution can be 

seen to rise for the increasing values of  . Further to this, the thermal boundary 

thickness is strengthened. A rise in the nanoparticle volume fraction has been observed 

for the higher estimation of   and the concentration boundary layer thickness is 

enhanced. 

Figures 4.11-4.12 are framed to delineate the outcome of Pr  on the temperature and 

concentration distributions. Since Pr  is directly proportionate to the viscous diffusion 

rate and inversely related to the thermal diffusivity, so the thermal diffusion rate suffers 

a reduction for the larger estimation of Pr  and subsequently, the temperature of the 

fluid drops significantly. Moreover, a decrement in the thermal boundary layer 

thickness has been noted. However, the nanoparticle volume fraction of the fluid can 

be remarked to escalates for the higher values of Pr . In addition to that, an increment 

can be seen in the concentration boundary layer thickness. 

The outcome of Ec on the temperature profiles has been characterized through 

Figure 4.13. Physically, the Eckert number depicts the relation between the kinetic 

energy of the fluid particles and the boundary layer enthalpy. The kinetic energy of the 

fluid particles rises as Ec  assumes the larger values. Hence, the temperature of the fluid 

climbs marginally and therefore, the associated momentum and thermal boundary layer 

thickness are enhanced. 

Figures 4.14-4.15 elucidate the effect of the radiation parameter R and the heat 

generation or absorption parameter Q  on the temperature distributions. Since the heat 

transfer climbs marginally for the higher estimation of R , thereby an increment in the 

temperature of the fluid and the thermal boundary layer has been noticed. However, as 

the value of Q  rises, more heat is generated causing an increment in the temperature 

and the thermal boundary layer thickness. On the other hand, as the value of Q  de-

escalates, the heat absorbed results in a decrement in the temperature and the associated 

thermal boundary layer thickness. 

Figures 4.16-4.17 delineate the outcome of Sc and   on the concentration fields. 

The concentration of the fluid depicts a decreasing behaviour as Sc  assumes the higher 

value. This behaviour stems from the fact that the Schmidt number and mass diffusion 
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rate have inverse relation, therefore, for the larger Sc , the process of the mass 

diffusivity slows down and thus, the concentration falls, and the concentration boundary 

layer thickness is reduced. Furthermore, the chemical reaction parameter also has a 

similar effect on the concentration profile. The larger values of result in a decrement in 

the chemical molecular diffusion and hence, the concentration of the fluid de-escalates, 

and the associated concentration boundary layer thickness is reduced. 

Figures 4.18-4.19 interpret the impact of the thermophoresis parameter on the 

temperature and concentration distributions. Both the temperature and concentration 

escalate by taking larger values of Nt  into account. In addition to this, an increment in 

the associated thermal and concentration boundary layer has been noticed. 

Figures 4.20-4.21 display the influence of the Brownian motion parameter on the 

temperature and concentration distributions. The temperature profile climbs marginally 

for the larger values of Nb . This happens due to the reason that as the value of Nb  

rises, the movement of the nanoparticles enhances significantly which triggers the 

kinetic energy of the nanoparticles and eventually, the temperature enhances, and the 

thermal boundary layer thickness is magnified. On the other hand, the concentration of 

the fluid falls as Nb  assumes the higher values. Also, the concentration boundary layer 

thickness is depressed.  

The impact of the thermal Biot number on the temperature distribution and the 

concentration Biot number on the nanoparticle volume fraction has been portrayed by 

Figures 4.22-4.23. It is remarkable that the temperature can be observed as an increasing 

function of 1Bi and the concentration of the fluid also enhances as 2Bi  heightens. 

Further to this, the associated thermal and concentration boundary layer thickness are 

enhanced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Depiction of velocity profile with increasing M . 
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Figure 4.3. Depiction 

of 

temperature profile with increasing M  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Depiction of concentration profile with increasing M  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Depiction of velocity profile with increasing A  
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Figure 4.6. Depiction of temperature profile with increasing A  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Depiction of concentration profile with increasing A  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Depiction of velocity profile with increasing   
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Figure 4.9. Depiction of temperature profile with increasing   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Depiction of concentration profile with increasing   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Depiction of temperature profile with increasing Pr  
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Figure 4.12. Depiction of concentration profile with increasing Pr  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Depiction of temperature profile with increasing Ec  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. Depiction of temperature profile with increasing R  
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Figure 4.15. Depiction of temperature profile with increasing Q  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. Depiction of concentration profile with increasing Sc  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17. Depiction of concentration profile with increasing   
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Figure 4.18. Depiction of temperature profile with increasing Nt  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. Depiction of concentration profile with increasing Nt  
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Figure 4.20. Depiction of temperature profile with increasing Nb  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21. Depiction of concentration profile with increasing Nb  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22. Depiction of temperature profile with increasing 1Bi  
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Figure 4.23. Depiction of concentration profile with increasing 2Bi  

 

 

5. Conclusion 

 

The conclusions drawn from the numerical results are summarized below. 

 

The magnetic parameter decelerates the velocity whereas an opposite trend has been 

observed for the temperature and concentration   fields by considering the Casson 

fluid. For the Casson fluid, the higher estimation of the Casson parameter escalates the 

velocity, temperature and concentration profiles. The temperature falls whereas the 

concentration escalates for the larger estimation of the Prandtl number in view of the 

Casson. The Eckert number accelerates the velocity and the temperature profile climbs 

marginally for the Casson fluid. The heat and mass transfer rates climb significantly as 

the value of thermophoresis parameter escalates, by considering the Casson fluids into 

account. For the Casson fluids, the heat transfer rate escalates for the radiation 

parameter. 
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