Supporting information

Photocatalyzed Arylation of Isonitriles by Diaryliodonium Salts towards N-Substituted Benzamides

Nadezhda M. Metalnikova^{*a*}, Nikita S. Antonkin^{*a*}, Tuan K. Nguyen^{*b*}, Natalia S. Soldatova^{*a*}, Alexander V. Nyuchev^{*c*}, Mikhail A. Kinzhalov^{*b**}, Pavel S. Postnikov^{*a**}.

^a Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avenue 30, Tomsk, 634050, Russian Federation. E-mail: postnikov@tpu.ru

^b Saint Petersburg State University, 7/9 Universitetskaya Nab., Saint Petersburg, 199034, Russian Federation. E-mail: <u>m.kinzhalov@spbu.ru</u>

^c Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod, 603950, Russian Federation. Table of content

1.	General information	S3
2.	Synthesis of lodonium salts <i>1 and 3</i>	S5
3.	Synthesis of Amides <i>2, 4, 5</i>	S14
4.	Control Experiments	S23
References		S25
Spectral data		S27

1. General information

Reagents were used as received from their commercial supplier (abcr, Acros Organics, Alfa Aesar, Sigma Aldrich, TCI, fluorochem, BLD pharm). The solvents were used as received expect MeCN which was dried using standard methods.¹ Unless otherwise stated, all yields refer to isolated yields of compounds estimated to be >95 % pure as determined by ¹H NMR spectroscopy.

Thin layer chromatography was performed on fluorescence indicator marked precoated silica gel 60 plates (Macherey-Nagel, ALUGRAM Xtra SIL G/UV254) and visualized by UV light (254 nm/365 nm). Column chromatography was performed on silica gel (0.040 – 0.063 mm) with the solvents given in the procedures.

¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker AVANCE III HD (400 MHz), Bruker AVANCE III (500 MHz). The following abbreviations were used to describe splitting patterns: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quin. = quintet, sext. = sextet, sept. = septet, m = multiplet. Coupling constants *J* are given in Hertz. Chemical shifts for ¹H NMR spectra were reported as δ (parts per million) relative to the residual signal of CDCl₃ at 7.26 ppm (s), DMSO-*d*₆ at 2.50 ppm (s), Acetone-*d*₆ at 2.05 ppm (quin.). Chemical shifts for ¹³C NMR spectra were reported as δ (parts per million) relative to the signal of CDCl₃ at 77.2 ppm (t), DMSO-*d*₆ at 39.5 ppm (sept.), Acetone-*d*₆ at 29.8 ppm (sept.).

HR-ESI mass spectra were recorded on a Bruker impact II. EI mass spectra were obtained from an Agilent 7890B GC System with an Agilent 5977A MSD mass spectrometer. All signals were reported with the quotient from mass to charge m/z. A solvent for HR-ESI mass spectra measurements specified for each compound.

Melting points were determined on a Büchi M-5600 Melting Point apparatus or on a melting point apparatus SMP30 with a heating rate of 2 °C/min. The melting points were reported in °C. Most of the iodonium salts underwent changes in appearance (e.g. softening) before final melting/decomposition.

Photochemical experiments were carried out with a homemade setup (Fig. S1A). The reaction mixture was irradiated by 20 W blue LED (455 nm) coiled around a glass tube. Water cooled to 14 °C was supplied between the glass tube and the screw cap tube with the reaction mixture. The screw cap tube is inside a glass tube (Fig. S1B).

Figure S1. Overview of the reaction setup. (A) Photoreactor with power on. (B) A screw cap tube arrangement inside the glass tube

2. Synthesis of lodonium salts 1 and 3

General procedure (GP1): according to the literature procedure.² lodoarene (1.0 equiv., 10.0 mmol) was dissolved in DCM (50 mL) and *m*CPBA was added (1.13 equiv., 11.3 mmol, 2.89 g, 70 %) neat. Then arene (1.13 equiv., 11.3 mmol) was added and the reaction mixture was stirred for 5 min. Afterwards the reaction mixture was cooled in icewater bath and TfOH (3.0 equiv., 30.0 mmol, 2.66 mL) was added dropwise. The mixture was allowed to stir overnight at room temperature. Then the solvent was removed under reduced pressure. The product was precipitated by Et₂O and stored at – 30 °C for 1 h. Then the precipitate was filtered, washed with cold Et₂O (3 × 15 mL) and dried under vacuum to give diaryliodonium triflate **1** or **2**.

General procedure (GP2): according to the modified literature procedure.³ Iodoarene (1.0 equiv., 10.0 mmol) was dissolved in CHCl₃ (10 mL). Then mCPBA (1.1 equiv., 11.0 mmol, 2.71 g, 70 %) and p-TsOH H₂O (1.0 equiv., 10.0 mmol, 2.09 g) were added neat. The reaction mixture was allowed to stir for 2 h at room temperature. Then the solvent was removed under reduced pressure and the product was precipitated by Et₂O. The precipitate was filtered and washed with Et₂O (3 × 10 mL). The product was dried under vacuum to give [hydroxy(tosyloxy)iodo]arene. Then prepared [hydroxy(tosyloxy)iodo]arene (1.0 equiv., 2.0 mmol) was suspended in MeCN. BF₃·Et₂O (4.0 equiv., 8.0 mmol, 1.02 mL) was added dropwise to the mixture. After full dissolution of the substrate arylboronic acid (1.1 equiv., 2.2 mmol) was added and the reaction mixture was stirred overnight. TfOH (3.0 equiv., 6.0 mmol, 0.9 mL) was added dropwise and stirring was continued for 30 min. The solvent was removed under reduced pressure and the product was isolated by column chromatography on silica (gradient elution: DCM:MeOH – 100:1 \rightarrow 10:1) to give diaryliodonium triflate **1**.

General procedure (GP3): according to the literature procedure.⁴ lodoarene (1.0 equiv., 5.0 mmol) and *p*-TsOH·H₂O (1.05 equiv., 5.25 mmol, 0.90 g, 70 %) was dissolved in MeCN (50 mL) and *m*CPBA was added (1.13 equiv., 11.3 mmol, 2.89 g, 70 %) neat. The reaction mixture was stirred at 77 °C for 30 min. Then 1,3,5-trimethoxybenzene (1.05 equiv., 5.25 mmol, 0.88 g) was added and the reaction mixture was stirred at 77 °C for 5 min. The solvent was removed under reduced pressure. The product was precipitated by Et₂O, washed with cold Et₂O (3 × 15 mL) and dried in the air at room temperature to give aryl(2,4,6-trimethoxyphenyl)iodonium tosylate. Afterwards aryl(2,4,6-trimethoxyphenyl)iodonium tosylate was dissolved in DCM (50 mL). The resulted solution was washed with cooled aqueous solution of NaOTf (1 M, 100 mL) prepared by mixing

solutions of NaOH (100 mmol, 4.0 g) in H₂O (50 mL) and TfOH (100 mmol, 8.8 mL) in H₂O (50 mL). Combined organic layer was dried over MgSO₄ and the solvent was removed under reduced pressure. The product was precipitated by Et₂O, filtered, washed with cold Et₂O (3 × 15 mL) and dried in the air at room temperature to give aryl(2,4,6-trimethoxyphenyl)iodonium triflate **1** or **3**. Not recommended to dry under vacuum since for some salts decomposition occurred!

1a: according to **GP1** iodobenzene (10.0 mmol, 1.2 mL) reacted with benzene (11.3 mmol, 1.0 mL) to give diphenyliodonium triflate **1a** as a white solid, 4.10 g (95 %). mp = 170 - 172 °C (lit. 169 – 173 °C).⁴ The analytical data is in accordance with previously published.⁴

¹H NMR (400 MHz, DMSO- d_6) δ 8.25 (d, J = 8.0 Hz, 4H), 7.67 (t, J = 6.8 Hz, 2H), 7.53 (t, J = 6.8 Hz, 4H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 135.2, 132.1, 131.8, 120.7 (q, *J* = 320.0 Hz), 116.5.
 ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.7.

TfO ,

OMe 1b: Preparation of 1b is based on the previously reported MeO procedure.⁴ Anisole (3.5 equiv., 20.0 mmol, 2.2 mL), mCPBA (70 %, 2.0 equiv., 14.3 mmol, 3.53 g) and *p*-TsOH H₂O (3.4 equiv., 19.4 mmol, 3.69 g) was dissolved in DCM (50 mL). Iodine (1.0 equiv., 5.7 mmol, 1.43 g) was added. Solution was stirred overnight at room temperature. Then the solvent was removed under reduced pressure, the product was precipitated by Et₂O, filtered and washed with Et₂O (3 × 15 mL). Obtained bis(4-methoxyphenyl)iodonium tosylate was dried in the air at room temperature. Afterwards bis(4-methoxyphenyl)iodonium tosylate was suspended in DCM (50 mL). The resulted suspension was washed with cooled aqueous solution of NaOTf (1 M, 100 mL) prepared by mixing solutions of NaOH (100 mmol, 4.0 g) in H₂O (50 mL) and TfOH (100 mmol, 8.8 mL) in H₂O (50 mL). Combined organic layer was dried over MgSO₄ and solvent was removed under reduced pressure. The product was precipitated by Et₂O, filtered, washed with cold Et₂O (3 × 15 mL) and dried under vacuum to give bis(4methoxyphenyl)iodonium triflate 1b as a white solid, 3.10 g (63 %). mp = 131 - 133 °C (lit. 116 – 125 °C).⁴ The analytical data is in accordance with previously published.⁴

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.13 (d, *J* = 8.4 Hz, 4H), 7.06 (d, *J* = 8.4 Hz, 4H), 3.79 (s, 6H).

¹³C NMR (100 MHz, DMSO- d_6) δ 161.9, 136.9, 120.7 (q, J = 320.0 Hz), 117.4, 106.0, 55.7.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.7.

F **1***c*: Preparation of **1***c* is based on the previously reported procedure.² Iodine (1.0 equiv., 10.0 mmol, 1.43 g) and *m*CPBA (3.0 equiv., 30.0 mmol, 3.2 g, 70 %,) was dissolved in DCM (84 mL). Afterwards the reaction mixture was cooled in ice-water bath and fluorobenzene (10.0 equiv., 100.0 mmol, 9.39 mL) was added. After 5 min of stirring TfOH (3.8 equiv., 38.0 mmol, 3.36 mL) was added dropwise. The mixture allowed to stir overnight at room temperature. The solvent was removed under reduced pressure. The product was precipitated by Et₂O, stored at - 30 °C for 1 h, filtered, washed with cold Et₂O (3 × 15 mL) and dried under vacuum to give bis(4-fluorophenyl)iodonium triflate **1***c* as a white solid, 5.25 g (56 %). mp = 166 – 168 °C (lit. 168 – 170 °C).⁵ The analytical data is in accordance with previously published.⁵

¹H NMR (400 MHz, DMSO- d_6) δ 8.32 (dd, J = 9.2, 5.2 Hz, 4H), 7.42 (t, J = 8.8 Hz, 4H). ¹³C NMR (100 MHz, DMSO- d_6) δ 164.0 (d, J = 250.0 Hz), 138.06 (d, J = 9.0 Hz), 120.7 (q, J = 320.0 Hz), 119.3 (d, J = 23.0 Hz), 111.2 (d, J = 3.0 Hz).

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.8, -106.6 – 106.6 (m).

TfO _

^{CI} C^I *Id*: according to *GP1* 1-chloro-4-iodobenzene (10.0 mmol, 2.39 g) reacted with chlorobenzene (11.3 mmol, 1.2 mL) to give bis(4-chlorophenyl)iodonium triflate *1d* as a white solid, 4.39 g (88 %). mp = 189 - 190 °C (lit. 183 - 185 °C).⁴ The analytical data is in accordance with previously published.⁴

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.26 (d, *J* = 8.0 Hz, 4H), 7.63 (d, *J* = 8.0 Hz, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 137.5, 137.0, 131.8, 120.7 (q, *J* = 320.0 Hz), 114.7. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.8.

Br Br **1e**: according to **GP1** 1-bromo-4-iodobenzene (10.0 mmol, 2.83 g) reacted with bromobenzene (11.3 mmol, 1.2 mL) for 2 h to give bis(4bromophenyl)iodonium triflate **1e** as a white solid, 5.30 g (90 %). mp = $210 - 212 \degree C$ (lit. 181 – 184 °C).⁴ The analytical data is in accordance with previously published.⁴ ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.18 (d, *J* = 8.4 Hz, 4H), 7.77 (d, *J* = 8.4 Hz, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 137.1, 134.7, 126.4, 120.7 (q, *J* = 320.3 Hz), 115.4. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.8.

1f: according to **GP2** 1-iodo-2-methylbenzene (10.0 mmol, 2.18 g) reacted with *m*CPBA (70 %, 11.0 mmol, 2.71 g) and *p*-TsOH·H₂O (11.0 mmol, 2.09 g) to give hydroxy(2-methylphenyl)iodonium tosylate as a white solid 3.98 g (98 %). Reaction of hydroxy(2-methylphenyl)iodonium tosylate (2.0 mmol, 0.81 g) with (2methylphenyl)boronic acid (2.2 mmol, 0.30 g) afforded bis(2-methylphenyl)iodonium triflate **1f** as a white solid, 0.44 g (48 %). mp = 175 – 178 °C (lit. 170 – 171 °C).⁶ The analytical data is in accordance with previously published.⁶

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.32 (d, *J* = 8.4 Hz, 2H), 7.60 – 7.56 (m, 4H), 7.32 – 7.28 (m, 2H), 2.61 (s, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 140.6, 137.2, 132.8, 131.6, 129.3, 120.7 (q, J = 320.0 Hz), 120.6, 25.0.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.8.

Me^{TfO}

CI TfO

CI

Me

1*g*: according to *GP2* 1-chloro-2-iodobenzene (10.0 mmol, 2.38 g) reacted with *m*CPBA (70 %, 11.0 mmol, 2.71 g) and *p*-TsOH·H₂O (11.0 mmol, 2.09 g) to give hydroxy(2-chlorophenyl)iodonium tosylate as a white solid 4.14 g (97 %). Reaction of hydroxy(2-chlorophenyl)iodonium tosylate (2.0 mmol, 0.85 g) with (2chlorophenyl)boronic acid (2.2 mmol, 0.34 g) afforded bis(2- chlorophenyl)iodonium triflate **1***g* as a white solid, 0.67 g (67 %). mp = 193 – 195 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.53 (d, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H).

¹³C NMR (100 MHz, DMSO- d_6) δ 139.0, 136.0, 134.8, 130.5, 130.2, 120.7 (q, J = 320.0 Hz), 119.6.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.8.

HRMS (positive mode, MeCN) calcd. for C₁₂H₈Cl₂l⁺ ([M+H]⁺) 348.9043 (found 348.9043). HRMS (negative mode, MeCN) calcd. for CF₃O₃S⁻ ([M+H]⁻) 148.9525 (found 148.9524).

1*h*: according to **GP2** 1-bromo-2-iodobenzene (10.0 mmol, 2.38 g) reacted with *m*CPBA (70 %, 11.0 mmol, 2.71 g) and *p*-TsOH·H₂O (11.0 mmol, 2.09 g) to give hydroxy(2-bromophenyl)iodonium tosylate as a white solid 4.62 g (98 %). Reaction of hydroxy(2-bromophenyl)iodonium tosylate (2.0 mmol, 0.94 g) with (2-bromophenyl)boronic acid (2.2 mmol, 0.44 g) afforded bis(2-bromophenyl)iodonium triflate **1***h* as a white solid, 0.76 g (65 %) mp = 209 – 210 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.50 (d, *J* = 7.6 Hz, 2H), 7.98 (d, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 7.6 Hz, 2H), 7.54 (t, *J* = 7.6 Hz, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 139.2, 134.7, 133.9, 130.6, 127.0, 122.9, 120,7 (q, *J* = 320.0 Hz).

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.8.

HRMS (positive mode, MeCN) calcd. for C₁₂H₈Br₂l⁺ ([M+H]⁺) 438.8012 (found 438.8014). HRMS (negative mode, MeCN) calcd. for CF₃O₃S⁻ ([M+H]⁻) 148.9525 (found 148.9527).

1i: Preparation of *1i* is based on the previously reported procedure.⁴ lodine (1.0 equiv., 2.84 mmol, 0.72 g) and NalO₄ (1.5 equiv., 4.3 mmol, 0.92 g) were added to H₂SO_{4conc}. (10 mL) and stirred at 75 °C for 1 h. Reaction mixture was cooled with ice-water bath and benzotrifluoride (9.1 equiv., 26 mmol, 3.8 mL) was added dropwise and obtained mixture was stirred overnight at room temperature. Then ice was added to the reaction mixture (total volume after melting was approximately 50 mL). TfOH (7.0 equiv., 20.0 mmol, 1.77 mL) was added. Resulted mixture was extracted with DCM (3 × 20 mL) and combined organic phase was dried over Mg₂SO₄ and solvent was removed under reduced pressure. The product was precipitated by Et₂O (2 mL) and hexane (18 mL), filtered and washed with hexane (3 × 10 mL). Afterwards the precipitate dried under vacuum to give bis(3-(trifluoromethyl)phenyl)iodonium triflate *1i* as a white solid, 1.83 g (45 %). mp = 109 – 110 °C (lit. 95 – 102 °C).⁴ The analytical data is in accordance with previously published.⁴

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.83 (s, 2H), 8.62 (d, *J* = 8.0 Hz, 2H), 8.07 (d, *J* = 8.0 Hz, 2H), 7.79 (t, *J* = 8.0 Hz, 2H).

¹³C NMR (100 MHz, DMSO- d_6) δ 139.4, 132.8, 132.0 (q, J = 4.0 Hz), 131.3 (q, J = 33.0 Hz), 129.1 (q, J = 3.0 Hz), 122.9 (q, J = 271.7 Hz), 120.7 (q, J = 320.0 Hz), 117.2.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -61.3, -77.8.

^{CF₃} ^{CF₃} *1j*: Preparation of *1j* is based on the previously reported procedure.⁷ A 100 mL round-bottom flask was charged with the mixture of TfOH (3 mL) and iodine (1.0 equiv., 0.66 mmol, 0.17 g). Then NaIO₄ (1.5 equiv., 1 mmol, 0.2 g) was added to the mixture under stream of argon, reaction vessel was flushed with argon and stirred at room temperature for 48 h. Afterwards, the reaction mixture was cooled in icewater bath and 1,3-bis(trifluoromethyl)benzene (9.1 equiv., 6.0 mmol, 0.95 mL) was added dropwise. The obtained mixture was allowed to stir at room temperature for 24 h. Then ice was added to the reaction mixture (total volume after melting was approximately 50 mL). The reaction mixture was extracted with EtOAc (3 × 20 mL). Combined organic phase were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The mixture of hexane (10 mL) and Et₂O (2 mL) was added to the residue. The product was filtered, washed with hexane (3 × 10 mL) and dried under vacuum to give bis(3,5-bis(trifluoromethyl)phenyl)iodonium triflate as a white solid, 0.79 mg (49 %). mp = 254 – 255 °C (dec.) (lit. 198 – 203 °C).⁷ The analytical data is in accordance with previously published.⁷

¹H NMR (400 MHz, Acetone-*d*₆) δ 9.21 (s, 4H), 8.43 (s, 2H).

¹³C NMR (100 MHz, Acetone-*d*₆) δ 137.8 (q, *J* = 4.0 Hz), 134.4 (q, *J* = 34.0 Hz), 127.7 (sept. *J* = 3.8 Hz), 123.1 (q, *J* = 271.3 Hz), 121.8 (q, *J* = 318.3 Hz), 116.5. ¹⁹F NMR (376 MHz, Acetone *d*₆) δ -63.4, -79.1.

Me^{Me^{Me}} Me^{Me} Me¹*k*: Preparation of **1***k* is based on the previously reported procedure.⁴ A 100 mL round-bottom flask was charged with iodine (1.0 equiv., 2.5 mmol, 0.64 g), Oxone (4.0 equiv., 10.0 mmol, 6.17 g) and mesitylene (4.3 equiv., 10.8 mmol, 1.5 mL). MeCN was added (10 mL). Afterwards, H₂SO_{4conc}. (2 mL) was added to the mixture. The reaction mixture was allowed to stir overnight. Then the solution of TfOH (4.0 equiv., 10.0 mmol, 0.88 mL) in water (10 mL) was added. Reaction mixture was extracted with DCM (3 × 20 mL) and combined organic phase was dried over Mg₂SO₄.The solvent was removed under reduced pressure. The product was precipitated by Et₂O (2 mL) and hexane (18 mL), filtered and washed with hexane (3 × 5 mL). Afterwards, the precipitate was dried under vacuum to give dimesityliodonium triflate **1***k* as an off-white solid, 1.20 g (47 %). mp = 197 - 198 °C (dec.) (lit. 189 - 191 °C).⁴ The analytical data is in accordance with previously published.⁴

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.19 (s, 4H), 2.46 (s, 12H), 2.29 (s, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 142.8, 141.9, 130.3, 120.7 (*J* = 320.0 Hz), 118.9, 25.3, 20.4.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.8.

Me Me **3a**: Preparation of **3a** is based on the previously reported procedure.⁸ Mesitylene (1.1 equiv., 11.0 mmol, 1,53 mL) was added to the suspension of iodosobenzene diacetate (1.0 equiv., 10.0 mmol, 3.22 g) in DCM (20 mL). Then the reaction mixture was cooled with ice-water bath and TfOH (1.1 equiv., 11.0 mmol, 0.97 mL) was added dropwise to a stirred solution. The cooling bath was removed and the reaction was stirred for 2 h at room temperature. The solvent was removed under reduced pressure, The product was precipitated by Et₂O. The solid was filtered and washed with Et₂O (3 × 15 mL). The solid was dried under vacuum to give mesityl(phenyl)iodonium triflate **3a** as a white solid, 4.60 g (97 %). mp = 150 – 151 °C (lit. 149 – 150 °C).⁹ The analytical data is in accordance with previously published.⁸

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.98 (d, *J* = 7.2 Hz, 2H), 7.65 – 7.61 (m, 1H), 7.52 – 7.48 (m, 2H), 7.22 (s, 2H), 2.60 (s, 6H), 2.29 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 143.1, 141.6, 134.5, 131.9, 131.8, 129.8, 122.6, 120.7 (q, *J* = 320.3 Hz), 114.5, 26.3, 20.5.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.7.

*i-*Pr

TfO _

i-Pr **3b**: according to **GP1** iodobenzene (10 mmol, 1.2 mL) reacted with 1,3,5-triisopropylbenzene (11.0 mmol, 2.7 mL) to give phenyl(2,4,6-triisopropylphenyl)iodonium triflate **3b** as a white solid, 3.00 g (54 %). mp = 171 – 172 °C (lit. 169 – 170 °C).⁸ The analytical data is in accordance with previously published.⁸ ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.0 Hz, 2H), 7.53 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.17 (s, 2H), 3.26 (sept., J = 6.8 Hz, 2H), 2.96 (sept., J = 6.8 Hz, 1H), 1.27 (d, J = 6.8 Hz, 12H).

¹³C NMR (100 MHz, CDCl₃) δ 155.8, 152.5, 132.7, 132.5, 132.0, 125.4, 120.7, 120.5 (q, J = 318.3 Hz), 113.0, 39.7, 34.3, 24.4, 23.8.

¹⁹F NMR (376 MHz, CDCl₃) δ -78.3.

TfO

MeO OMe **3c**: according to **GP3** iodobenzene (5.0 mmol, 0.56 mL) reacted with 1,3,5-trimethoxybenzene (5.25 mmol, 0.88 g) to give phenyl(2,4,6-trimethoxyphenyl)iodonium triflate **3c** as a white solid, 2.00 g (77 %). mp = 107 – 108 °C (dec.) (lit. 114 – 116 °C). The analytical data is in accordance with previously published.¹⁰ ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.92 (d, *J* = 8.0 Hz, 2H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 2H), 6.47 (s, 2H), 3.95 (s, 6H), 3.87 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.2, 159.4, 134.3, 131.7, 131.6, 120.7 (q, J = 320.0 Hz), 116.1, 92.1, 87.0, 57.3, 56.1.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.8.

OMe

Me ́МеО́ ^{OMe} 3d: according to GP3 1-iodo-4-methylbenzene (5.0 mmol, 1.09 g) reacted with 1,3,5-trimethoxybenzene (5.25 mmol, 0.88 g) to give 4methylphenyl(2,4,6-trimethoxyphenyl)iodonium tosylate as a white solid, 2.67 g (96 %). 4-Methylphenyl(2,4,6-trimethoxyphenyl)iodonium tosylate (4.8 mmol ,2.66 g) was washed with the solution of NaOTf to give 4-methylphenyl(2,4,6trimethoxyphenyl)iodonium triflate **3d** as a white solid, 2.20 g (85 %). mp = 73 - 74 °C (dec.). The analytical data is in accordance with previously published.¹¹

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.80 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 6.45 (s, 2H), 3.94 (s, 6H), 3.86 (s, 3H), 2.32 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.1, 159.3, 142.0, 134.5, 132.2, 120.7 (q, J = 320.3 Hz), 112.5, 92.0, 87.2, 57.3, 56.2, 20.8.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.8.

MeOOC MeO OMe **3e**: according to **GP3** methyl 4-iodobenzoate (5.0 mmol, 1.31 g) reacted with 1,3,5-trimethoxybenzene (5.25 mmol, 0.88 g) to give (4-(methoxycarbonyl)phenyl)(2,4,6-trimethoxyphenyl)iodonium tosylate as a white solid, 2.64 g (88 %). (4-(Methoxycarbonyl)phenyl)(2,4,6-trimethoxyphenyl)iodonium tosylate (4.4 mmol, 2.63 g) was washed with the solution of NaOTf to give (4-(methoxycarbonyl)phenyl)(2,4,6-trimethoxyphenyl)iodonium triflate **3e** as a white solid,

2.10 g (83 %). mp = 98 - 100 °C (dec.) (lit. 120 - 122 °C).¹² The analytical data is in accordance with previously published.¹²

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.05 (d, *J* = 8.0 Hz, 2H), 7.97 (d, *J* = 8.0 Hz, 2H), 6.48 (s, 2H), 3.94 (s, 6H), 3.87 (s, 3H), 3.85 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.4, 165.2, 159.4, 134.6, 132.2, 131.9, 120.9, 120.7 (q., *J* = 320.3 Hz), 107.1, 92.2, 86.9, 57.4, 56.2, 55.0, 52.7, 15.2. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -77.8.

 F_3C OMe **3f**: according to **GP1** 4-iodobenzotrifluoride (5.0 mmol, 0.75 mL) reacted with anisole (5.0 mmol, 0.55 mL) to give (4-methoxyphenyl)(4-(trifluoromethyl)phenyl)iodonium triflate **3f** as an off-green solid, 0.76 g (29 %). mp = 148 – 149 °C (lit. 149.6 °C).¹³ The analytical data is in accordance with previously published.¹³ ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.39 (d, *J* = 8.0 Hz, 2H), 8.22 (d, *J* = 8.4 Hz, 2H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 3.80 (s, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.2, 137.6, 135.6, 131.7 (q., *J* = 31.3 Hz), 128.3 (q., *J* = 3.0 Hz), 123.5 (q., *J* = 271.7 Hz), 121.3, 120.7 (q., *J* = 320.0 Hz), 117.6, 55, 105.6, 55.8.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -61.6, -77.8.

3. Synthesis of Amides 2, 4, 5

General procedure (GP4): a transparent tube with screw cap was charged with iodonium salt **1** or **3** (1.0 equiv., 0.2 mmol or 2.0 equiv., 0.4 mmol), Na₂CO₃ (1.7 equiv., 0.34 mmol, 36 mg or 3.4 equiv., 0.68 mmol, 72 mg), isocyanide (1.0 equiv., 0.2 mmol) and [Ru(bpy)₃](PF₆)₂ (2.0 mol. %, 0.002 mmol, 2 mg). Afterwards MeCN (2 mL) and H₂O (200 μ L) were added. The suspension was bubbled with argon for 20 min and closed under stream of argon. Then the tube was allowed to stir under 20 W blue LED (455 nm) irradiation for 10 h under water cooling (14 °C). After the reaction was completed, water was added (15 mL) and the water layer was extracted with DCM (4 × 15 mL). The combined organic layers were dried over Mg₂SO₄, filtered and the solvent was removed under reduced pressure. The product was isolated by column chromatography on silica to afford the crude product **2** or **4**, **5**. The crude product **2** or **4**, **5** was refluxed with hexane (1 mL), cooled to -30 °C, decanted and washed with hexane (2 × 1 mL). Solid was dried under vacuum to give amide **2** or **4**, **5**.

Me **2aa**: according to **GP4** 1-isocyano-4-methylbenzene (0.2 mmol, 12 mg) reacted with diphenyliodonium triflate **1a** (0.2 mmol, 86 mg) followed by column chromatography (gradient elution: hexane \rightarrow hexane:EtOAc – 10:1) to give *N*-(4tolyl)benzamide **2aa** as a beige solid, 26 mg (31 %). mp = 155 – 157 °C (lit. 158 – 159 °C).¹⁴ The analytical data is in accordance with previously published.¹⁴

¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.6 Hz, 3H(Ar+NH)), 7.55 – 7.51 (m, 3H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 2.34 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.8, 135.5, 135.2, 134.4, 131.9, 129.7, 128.9, 127.1, 120.4, 21.1.

^{Me} **2ba**: according to **GP4** 2-isocyano-1,3-dimethylbenzene (0.2 mmol, 26 mg) reacted with diphenyliodonium triflate **1a** (0.2 mmol, 86 mg) followed by column chromatography (gradient elution: hexane:EtOAc – 10:1 \rightarrow 7:1) to give *N*-(2,6-dimethylphenyl)benzamide **2ba** as an yellowish solid, 15 mg (33 %). mp = 156 – 157 °C (lit. 155 – 157 °C).¹⁵ The analytical data is in accordance with previously published.¹⁶ This amide was also mentioned as **4a** in the selectivity study for clarity.

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.6 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.50 – 7.47 (m, 3H), 7.17 – 7.10 (m, 3H), 2.27 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 166.0, 135.7, 134.6, 134.0, 131.9, 128.9, 128.4, 127.5, 127.4, 18.6.

Me **2bb**: according to **GP4** 2-isocyano-1,3-dimethylbenzene (0.2 mmol, 26 mg) reacted with bis(4-methoxyphenyl)iodonium triflate **1b** (0.2 mmol, 98 mg) followed by column chromatography (gradient elution: hexane:EtOAc – 10:1 \rightarrow 7:1) (0.4 mmol, 196 mg) to give *N*-(2,6-dimethylphenyl)-4-methoxybenzamide **2bb** as a beige solid, 14 mg (27 %). mp = 169 – 170 °C (lit. 168 – 170 °C).¹⁷ The analytical data is in accordance with previously published.¹⁷ This amide was also mentioned as **5b** in the selectivity study for clarity.

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 2H), 7.36 (br s, 1H), 7.16 – 7.09 (m, 3H), 6.97 (d, *J* = 8.0 Hz, 2H), 3.88 (s, 3H), 2.27 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.5, 162.6, 135.7, 134.2, 129.2, 128.4, 127.4, 126.8, 114.0, 55.6, 18.6.

Me **2bc**: according to **GP4** 2-isocyano-1,3-dimethylbenzene (0.2 mmol, 26 mg) reacted with bis(4-fluorophenyl)iodonium triflate **1c** (0.2 mmol, 93 mg) followed by column chromatography (gradient elution: hexane:EtOAc – $10:1 \rightarrow 7:1$) to give *N*-(2,6-dimethylphenyl)-4-fluorobenzamide **2bc** as a pinkish solid, 21 mg (43 %). mp = 180 - 181 °C (lit. 179 - 181 °C).¹⁷ The analytical data is in accordance with previously published.¹⁷

¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, *J* = 8.0, 5.6 Hz, 2H), 7.47 (br s, 1H), 7.17 – 7.10 (m, 5H), 2.25 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.0 (d, *J* = 251.0 Hz), 165.0, 135.7, 133.9, 130.7 (d, *J* = 3.0 Hz), 129.7 (d, *J* = 9.0 Hz), 128.4, 127.7, 115.9 (d, *J* = 21.0 Hz), 18.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -107.6 – -107.7 (m).

HRMS (positive mode, MeCN) calcd. for C₁₅H₁₅FNO⁺ ([M+H]⁺) 244.1133 (found 244.1135).

Me **2bd**: according to **GP4** 2-isocyano-1,3-dimethylbenzene (0.2 mmol, 26 mg) reacted with bis(4-chlorophenyl)iodonium triflate **1d** (0.2 mmol, 100 mg) followed by column chromatography (gradient elution: hexane:EtOAc – $10:1 \rightarrow 7:1$) to give 4-chloro-*N*-(2,6-dimethylphenyl)benzamide **2bd** as an yellowish solid, 22 mg (42 %). mp = 180 - 181 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 2H), 7.50 (br s, 1H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.17 – 7.10 (m, 3H), 2.24 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.1, 138.2, 135.6, 133.8, 132.9, 129.1, 128.8, 128.5, 127.7, 18.6.

HRMS (positive mode, MeCN) calcd. for C₁₅H₁₅ClNO⁺ ([M+H]⁺) 260.0837 (found 260.0834).

We **2be**: according to **GP4** 2-isocyano-1,3-dimethylbenzene (0.2 mmol, 26 mg) reacted with bis(4-bromophenyl)iodonium triflate **1e** (0.2 mmol, 118 mg) followed by column chromatography (gradient elution: hexane:EtOAc – $10:1 \rightarrow 7:1$) to give 4-bromo-*N*-(2,6-dimethylphenyl)benzamide **2be** as a white solid, 33 mg (54 %). mp = 189 – 191 °C (lit. 190 – 192 °C).¹⁷ The analytical data is in accordance with previously published.¹⁷

¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.59 – 7.56 (m, 3H), 7.17 – 7.09 (m, 3H), 2.23 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.2, 135.6, 133.8, 133.3, 132.1, 129.0, 128.4, 127.7, 126.6, 18.6.

Me^o 2*bf*: according to *GP4* 2-isocyano-1,3-dimethylbenzene (0.2 mmol, 26 mg) reacted with bis(2-methylphenyl)iodonium triflate *1f* (0.2 mmol, 92 mg) followed by column chromatography (gradient elution: hexane:EtOAc – $10:1 \rightarrow 7:1$) to give *N*-(2,6-dimethylphenyl)-2-methylbenzamide *2bf* as an yellowish solid, 17 mg (36 %). mp = 135 – 136 °C (lit. 138 – 140 °C).¹⁷ The analytical data is in accordance with previously published.¹⁷

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.2 Hz 1H), 7.30 – 7.25 (m, 2H), 7.18 – 7.11 (m, 3H), 7.08 (br s, 1H), 2.54 (s, 3H), 2.34 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 136.7, 136.4, 135.7, 133.7, 131.4, 130.3, 128.5, 127.7, 126.8, 126.0, 20.1, 18.8.

Me

Me^o ^{CI} **2bg**: according to **GP4** 2-isocyano-1,3-dimethylbenzene (0.2 mmol, 26 mg) reacted with bis(2- chlorophenyl)iodonium triflate **1g** (0.2 mmol, 100 mg) followed by column chromatography (gradient elution: hexane:EtOAc – 10:1 → 7:1) to give 2-chloro-*N*-(2,6-dimethylphenyl)benzamide **2bg** as a white solid, 35 mg (67 %). mp = 148 – 150 °C. The analytical data is in accordance with previously published.¹⁸

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.2 Hz, 1H), 7.49 – 7.36 (m, 4H), 7.17 – 7.11 (m, 3H), 2.35 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.0, 135.8, 135.3, 133.5, 131.7, 130.7, 130.6, 130.5, 128.5, 127.8, 127.4, 18.9.

 $^{\lor}$ Me^Ö ^{Br} **2bh**: according to **GP4** 2-isocyano-1,3-dimethylbenzene (0.2 mmol, 26 mg) reacted with bis(2-bromophenyl)iodonium triflate **1h** (0.2 mmol, 118 mg) followed by column chromatography (gradient elution: hexane:EtOAc – 10:1 \rightarrow 7:1) to give 2-bromo-*N*-(2,6-dimethylphenyl) benzamide **2bh** as a white solid, 39 mg (64 %). mp = 172 – 173 °C (lit. 166 – 168 °C).¹⁹ The analytical data is in accordance with previously published.¹⁹

¹H NMR (400 MHz, CDCl₃) δ 7.67 (t, *J* = 8.4 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.35 – 7.31 (m, 2H), 7.18 – 7.11 (m, 3H), 2.37 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 166.0, 138.0, 135.9, 133.7, 133.4, 131.6, 130.0, 128.5, 127.9, 127.8, 119.4, 19.0.

Define the second sec

¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 8.07 (d, *J* = 7.6 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.18 – 7.10 (m, 3H), 2.25 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 164.7, 135.6, 135.4, 133.5, 131.5 (q, J = 32.6 Hz), 130.6, 129.5, 128.6 (q, J = 4.0 Hz), 128.5, 127.9, 124.4 (q, J = 3.7 Hz), 123.8 (q, J = 271.0 Hz), 18.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.7.

HRMS (positive mode, MeCN) calcd. for C₁₆H₁₅F₃NO⁺ ([M+H]⁺) 294.1100 (found 294.1105).

Me **2***bj*: according to **GP4** 2-isocyano-1,3-dimethylbenzene (0.2 mmol, 26 mg) reacted with bis(3,5-bis(trifluoromethyl)phenyl)iodonium triflate **1***j* (0.4 mmol, 281 mg) followed by column chromatography (gradient elution: hexane \rightarrow hexane:EtOAc - 10:1) to give *N*-(2,6-dimethylphenyl)-3,5-bis(trifluoromethyl)benzamide **2***bj* as a white solid, 30 mg (42 %). mp = 176 - 177 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 2H), 8.07 (s, 1H), 7.59 (br s, 1H), 7.19 – 7.11 (m, 3H), 2.26 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 163.2, 136.6, 135.5, 133.1, 132.8 (q, J = 33.6 Hz), 128.6, 128.2, 127.7 (d, J = 2.0 Hz), 125.5 (p, J = 3.5 Hz), 123.0 (q, J = 271.3 Hz), 18.6.
¹⁹F NMR (376 MHz, CDCl₃) δ -62.9.

HRMS (positive mode, MeCN) calcd. for C₁₇H₁₄F₆NO⁺ ([M+H]⁺) 360.0975 (found 360.0983).

Me⁻ 2*bk*: according to *GP4* 2-isocyano-1,3-dimethylbenzene (0.2 mmol, 26 mg) reacted with dimesityliodonium triflate 1*k* (0.2 mmol, 103 mg) followed by column chromatography (gradient elution: hexane:EtOAc − 10:1 → 7:1) to give *N*-(2,6-dimethylphenyl)-2,4,6-trimethylbenzamide 2*bk* as a beige solid, 10 mg (19 %). mp = 192 − 193 °C (lit. 197 − 199 °C).²⁰ The analytical data is in accordance with previously published.²⁰ This amide was also mentioned as 5*a* in the selectivity study for clarity. ¹H NMR (400 MHz, CDCl₃) δ 7.17 − 7.11 (m, 3H), 6.96 (br s, 1H), 6.91 (s, 2H), 2.47 (s, 6H), 2.39 (s, 6H), 2.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 138.9, 135.3, 135.0, 134.7, 133.6, 128.8, 128.7, 127.6, 21.2, 20.1, 19.7.

Me **2ce**: according to **GP4** 1-isocyano-4-methylbenzene (0.2 mmol, 24 mg) reacted with bis(4-bromophenyl)iodonium triflate **1e** (0.2 mmol, 118 mg) followed by column chromatography (gradient elution: hexane:EtOAc – 10:1 \rightarrow 7:1) to give 4bromo-*N*-(*p*-tolyl)benzamide **2ce** as a brown solid, 13 mg (22 %). mp = 186 – 187 °C (lit. 180 – 181 °C).²¹ The analytical data is in accordance with previously published.²¹ ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.23 (s, 1H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 164.3, 136.4, 134.1, 132.8, 131.4, 129.8, 129.1, 125.2,

120.4, 20.5.

2*de*: according to *GP4* 1-chloro-4-isocyanobenzene (0.2 mmol, 27 mg) reacted with bis(4-bromophenyl)iodonium triflate *1e* (0.4 mmol, 235 mg) followed by column chromatography (gradient elution: hexane:EtOAc – 10:1 \rightarrow 7:1) to give 4bromo-*N*-(4-chlorophenyl)benzamide *2de* as an off-white solid, 20 mg (32 %). mp = 219 – 220 °C. The analytical data is in accordance with previously published.²¹

¹H NMR (400 MHz, CDCl₃) δ 7.80 (br s, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 164.9, 136.3, 133.5, 132.3, 130.0, 129.3, 128.8, 127.0, 121.6.

2ee: according to **GP4** 1-isocyano-3-chlorobenzene (0.2 mmol, 28 mg) reacted with bis(4-bromophenyl)iodonium triflate **1e** (0.4 mmol, 235 mg) followed by column chromatography (hexane:EtOAc – 15:1) to give 4-bromo-*N*-(3chlorophenyl)benzamide **2ee** as a white solid, 8 mg (13 %). mp = 120 - 121 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (br s, 1H), 7.75 – 7.72 (m, 3H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 138.9, 135.0, 133.5, 132.3, 130.3, 128.8, 127.1, 125.0, 120.5, 118.3. HRMS (positive mode, MeCN) calcd. for $C_{13}H_9BrCINNaO^+$ ([M+H]⁺) 331.9454 (found 331.9444).

2*fe*: according to *GP4* 1-isocyano-3-(trifluoromethyl)benzene (0.2 mmol, 34 mg) reacted with bis(4-bromophenyl)iodonium triflate *1e* (0.2 mmol, 118 mg) followed by column chromatography (hexane:EtOAc – 15:1) to give 4-bromo-*N*-(3-(trifluoromethyl)phenyl)benzamide *2fe* as a white solid, 5 mg (7 %). mp = 98 – 100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.85 (d, *J* = 6.4 Hz, 2H(Ar+NH)), 7.76 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 7.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 138.3, 133.3, 132.4, 131.7 (q, *J* = 32.5 Hz), 129.9, 128.8, 127.2, 123.4, 122.8 (q, *J* = 271.5 Hz), 121.5 (q, *J* = 3.8 Hz), 117.1 (q, *J* = 3.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8.

HRMS (positive mode, MeCN) calcd. for $C_{14}H_9BrF_3NNaO^+$ ([M+H]⁺) 365.9717 (found 365.9715).

Br

Me Me 2ge: according to GP4 2-isocyano-1,3-dimethylbenzene (0.2 mmol, 29 mg) reacted with bis(4-bromophenyl)iodonium triflate 1e (0.4 mmol, 235 mg) followed by column chromatography (gradient elution: hexane:EtOAc – 10:1 \rightarrow 7:1) to give 4-bromo-*N*-mesitylbenzamide 2ge as a white solid, 46 mg (73 %). mp = 222 – 223 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.37 (br s, 1H), 6.93 (s, 2H), 2.30 (s, 3H), 2.21 (s, 6H).

¹³C NMR (100 MHz, CDCl3) δ 165.3, 137.4, 135.4, 133.5, 132.1, 131.1, 129.2, 129.0, 126.6, 21.1, 18.5.

HRMS (positive mode, MeCN) calcd. for C₁₆H₁₇BrNO⁺ ([M+H]⁺) 318.0489 (found 244.1135).

201 °C (lit. 180 – 181 °C).²² The analytical data is in accordance with previously published.²²

¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.4 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 2H), 5.96 (d, *J* = 4.4 Hz, 1H), 4.00 – 3.90 (m, 1H), 2.02 (d, *J* = 12.0 Hz, 2H), 1.78 – 1.73 (m, 2H), 1.66 (s, 1H), 1.42 (q, *J* = 12.4 Hz, 2H), 1.27 – 1.18 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.8, 134.0, 131.8, 128.6, 126.0, 49.0, 33.3, 25.7, 25.0.

Me O **2ie:** according to **GP4** 2-isocyano-2-methylpropane (0.2 mmol, 17 mg) reacted with bis(4-bromophenyl)iodonium triflate **1e** (0.2 mmol, 118 mg) followed by column chromatography (hexane:EtOAc – 15:1) to give 4-bromo-*N*-(*tert*-butyl)benzamide **2ie** as a white solid, 13 mg (25 %). mp = 135 – 136 °C (lit. 132 – 133 °C).²³ The analytical data is in accordance with previously published.²³

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.8 Hz, 2H), 5.88 (br s, 1H), 1.46 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 166.1, 134.9, 131.8, 128.5, 125.8, 52.0, 29.0.

HRMS (positive mode, MeCN) calcd. for $C_{11}H_{15}BrNNaO^+$ ([M+H]⁺) 278.0156 (found 278.0151).

Me^{$\acute{}$} Me ^{\acute{O}} **2***je:* according to **GP4** 2-isocyano-2,4,4-trimethylpentane (0.2 mmol, 28 mg) reacted with bis(4-bromophenyl)iodonium triflate **1e** (0.2 mmol, 118 mg) followed by column chromatography (hexane:EtOAc – 15:1) to give 4-bromo-*N*-(2,4,4-trimethylpentan-2-yl)benzamide **2***je* as a white solid, 6 mg (10 %). mp = 85 – 87 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.52 (m, 4H), 5.88 (s, 1H), 1.85 (s, 2H), 1.52 (s, 6H), 1.04 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 165.8, 135.2, 131.9, 128.4, 125.8, 55.9, 51.8, 31.9, 31.7, 29.4.

HRMS (positive mode, MeCN) calcd. for $C_{15}H_{22}BrNNaO^+$ ([M+H]⁺) 334.0774 (found 334.0782).

Me **4d**: according to **GP4** 1-isocyano-4-methylbenzene (0.2 mmol, 12 mg) reacted with 4-methylphenyl(2,4,6-trimethoxyphenyl)iodonium triflate **3d**

(0.2 mmol, 106.8 mg) followed by column chromatography (gradient elution: hexane \rightarrow hexane:EtOAc – 10:1 \rightarrow 7/1) to give *N*-(2,6-dimethylphenyl)-4-methylbenzamide **4d** as an off-white solid, 13 mg (26 %). mp = 158 – 159 °C (lit. 162 – 164 °C).¹⁷The analytical data is in accordance with previously published.²⁴

¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 7.6 Hz, 2H), 7.35 (br s, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.18 – 7.10 (m, 3H), 2.44 (s, 3H), 2.28 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 165.9, 142.5, 135.7, 134.1, 131.8, 129.6, 128.4, 127.5, 127.4, 21.7, 18.7.

4e: according to GP4 1-isocyano-4-methylbenzene (0.2 mmol, 12 mg) reacted with (4-(methoxycarbonyl)phenyl)(2,4,6-trimethoxyphenyl)iodonium triflate **3e** (0.2 mmol, 115.6 mg) followed by column chromatography (gradient elution: hexane:EtOAc 10:1 7/1) methyl hexane \rightarrow to give 4-((2,6dimethylphenyl)carbamoyl)benzoate 4e as an off-white solid, 24 mg (42 %). mp = 198 -199 °C (lit. 192 – 194 °C).²⁵ The analytical data is in accordance with previously published.25

¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.0 Hz, 2H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.54 (br s, 1H), 7.18 – 7.12 (m, 3H), 3.96 (s, 3H), 2.27 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 166.4, 165.2, 138.5, 135.6, 133.6, 133.1, 130.1, 128.5, 127.8, 127.4, 52.6, 18.6.

Me 4f: according to *GP4* 1-isocyano-4-methylbenzene (0.2 mmol, 12 mg) reacted with (4-methoxyphenyl)(4-(trifluoromethyl)phenyl)iodonium triflate *3f* (0.2 mmol, 106.8 mg) followed by column chromatography (hexane \rightarrow hexane:EtOAc – 10:1) to give *N*-(2,6-dimethylphenyl)-4-(trifluoromethyl)benzamide *4f* as a white solid, 19 mg (32 %). mp = 206 - 207 °C (lit. 205 - 207 °C).¹⁷ The analytical data is in accordance with previously published.¹⁷

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 2H), 7.71 – 7.68 (m, 3H), 7.20 – 7.14 (m, 1H), 7.11 (d, *J* = 7.2 Hz, 2H), 2.24 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 164.9, 137.7, 135.6, 133.6 (q, J = 32.6 Hz), 133.6, 128.5, 127.9, 127.8, 125.9 (q, J = 3.6 Hz), 123.8 (q, J = 271.0 Hz), 18.54.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.9.

4. Control Experiments

Figure S2. Radical trapping experiment.

Figure S3. Experiment with formamide 7 as a substrate.

References

1. Armarego, W. L., Chai, C. L. L., Purification of Laboratory Chemicals (6th Edition), Elsevier Inc., London, 2009.

2. Bielawski, M.; Zhu, M.; Olofsson, B. Adv. Synth. Catal. 2007, 349, 2610–2618.

3. Vlasenko, Y. A.; Kuczmera, T. J.; Antonkin, N. S.; Valiev, R. R.; Postnikov, P. S.; Nachtsheim, B. *J. Adv. Synth. Catal.* **2023**, *365*, 535–543.

4. Podrezova, E. V.; Okhina, A. A.; Rogachev, A. D.; Baykov, S. V.; Kirschning, A.; Yusubov, M. S.; Soldatova, N. S.; Postnikov, P. S. *Org. Biomol. Chem.* **2023**, *21*, 1952–1957.

5. Laudadio, G.; Gemoets, H. P.; Hessel, V.; Noël, T. *J. Org. Chem.* **2017**, *8*2, 11735–11741

6. Kuriyama, M.; Hamaguchi, N.; Onomura, O. Chem. - Eur. J. 2012, 6, 1591-1594.

7. Guselnikova, O.; Fraser, J. P.; Soldatova, N.; Sviridova, E.; Ivanov, A.; Rodriguez, R.; Ganin, A. Y.; Postnikov, P. *Mater. Today Chem.* **2022**, *24*, 100846.

- 8. Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172-8174.
- 9. Reay, A. J.; Williams, T. J.; Fairlamb, I. J. Org. Biomol. Chem. 2015, 13, 8298-8309.
- 10. Malmgren, J.; Santoro, S.; Jalalian, N.; Himo, F.; Olofsson B. *Chem. Eur. J.* **2013**, *19*, 10334-10342.
- 11. Gallagher, R. T.; Basu, S.; Stuart, D. R. Adv. Synth. Catal. 2020, 362, 320-325.
- 12. Seidl, T. L.; Stuart, D. R. J. Org. Chem. 2017, 82, 11765-11771.
- 13. Kervefors, G.; Kersting, L.; Olofsson, B. Chem. Eur. J. 2021, 27, 5790-5795.
- 14. Chang, R. K.; Clairmont, B. P.; Lin, S.; MacArthur, A. H. Organometallics. **2019**, *38*, 4448-4454.
- 15. Gockel, S. N.; Hull, K. L. Org. Lett. 2015, 17, 3236-3239.

16. Shi, S.; Szostak, M. ChemComm. 2017, 53, 10584-10587.

- 17. Guo, W.; Huang, J.; Wu, H.; Liu, T.; Luo, Z.; Jian, J.; Zeng, Z. Org. Chem. Front. **2018**, *5*, 2950-2954.
- 18. Quesnel, J. S.; Arndtsen, B. A. J. Am. Chem. Soc. 2013, 135, 16841-16844.
- 19. Huy, P. H.; Mbouhom, C. Chem. Sci., 2019, 10, 7399-7406.
- 20. Zhu, Y. P.; Sergeyev, S.; Franck, P.; Orru, R. V.; Maes, B. U. Org. Lett. **2016**, *18*, 4602-4605.
- 21. Wang, S. P.; Cheung, C. W.; M,a J. A. J. Org. Chem. 2019, 84, 13922-13934.
- 22. Pelletier, G.; Bechara, W. S.; Charette, A. B. *J. Am. Chem. Soc.* **2010**, *132*, 12817-12819.
- 23. Singh, G.; Dada, R.; Yaragorla, S. Tetrahedron Lett. 2016, 57, 4424-4427.

- 24. Meng, G.; Lei P.; Szostak, M. Org. Lett. 2017, 19, 2158-2161.
- 25. Huang, P. Q.; Chen, H. ChemComm. 2017, 53, 12584-12587.

Spectral data

1a, ¹H NMR 400 MHz, DMSO-d₆

1a, ¹⁹F NMR 376 MHz, DMSO-d₆

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-77.74

1b, ¹H NMR 400 MHz, DMSO-d₆

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

TfO

1c, ¹⁹F NMR 376 MHz, DMSO-*d*₆

0 -100 -110 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

1d, ¹H NMR 400 MHz, DMSO-*d*₆

1d, ¹³C NMR 100 MHz, DMSO-d₆

1d, ¹⁹F NMR 376 MHz, DMSO-d₆

1e, ¹H NMR 400 MHz, DMSO-*d*₆

1e, ¹⁹F NMR 376 MHz, DMSO-d₆

0 -110 ppm -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

110 100 f1 (ppm) 0

1f, ¹⁹F NMR 376 MHz, DMSO-*d*₆

1g, ¹H NMR 400 MHz, DMSO-d₆

1g, ¹⁹F NMR 376 MHz, DMSO-d₆

1h, ¹⁹F NMR 376 MHz, DMSO-*d*₆

S53

1*i*, ¹⁹F NMR 376 MHz, DMSO-*d*₆

S55

Т Ó f1 (ppm)

-77.77-

0 -100 -110 -120 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -130 -140 -150 -160 -170 -180 -190 -200 -210

376 MHz, CDCl₃

376 MHz, DMSO- d_6

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-77.76

S70

0 -100 -110 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

S73

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-70 -72 -74 f1 (ppm) -76 -48 -50 -52 -54 -56 -58 -60 -62 -64 -66 -68 -78 -80 -82 -84 -86 -88 -90 -92

2bc, ¹⁹F NMR 376 MHz, CDCl₃

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

400 MHz, CDCl₃

2bi, ¹⁹F NMR 376 MHz, CDCl₃

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
										f1	(ppm)										

-62.85

2bk, ¹H NMR 400 MHz, CDCl₃

2de, ¹H NMR 400 MHz, CDCl₃

2ee, ¹H NMR 400 MHz, CDCl₃

2ee, ¹³C NMR 100 MHz, CDCl₃

	- I I	- I I		1 1	- I I	- I I			- I I				1 1							1 1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
f1 (ppm)																					

2fe, ¹H NMR 400 MHz, CDCl₃

2fe, ¹⁹F NMR 376 MHz, CDCl₃

2he, ¹H NMR 400 MHz, CDCl₃

Br

S120

S125

4f, ¹⁹F NMR 376 MHz, CDCl₃

0 -100 -110 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -90 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

-62.942