A multicomponent reaction-initiated synthesis of imidazopyridinefused isoquinolinones

Ashutosh Nath, John Mark Awad, Wei Zhang

Table of Contents

1.	General Information	S2
2.	General procedure for the synthesis of GBB products 4	S2
3.	General procedure of N-acylation for the synthesis of products 6	S2
4.	General procedure for IMDA and dehydrative re-aromatization for making products	S2
5.	LC-MS of detection IMDA adduct 7a	S6
6.	X-ray crystelography report of 8a and 6t	S7
7.	Analytical characterization data of products 6a and 8	S9
8.	¹ H-NMR, ¹³ C-NMR spectra of products 6a and 8	S13

1. General Information

All the GBB reactions were conducted in a sealed Biotage microwave reaction vial unless stated otherwise. Flash column chromatography was performed utilizing silica gel (200–300 mesh) under elevated pressure. The ¹H-NMR, and ¹³C-NMR spectroscopic data were acquired using Bruker Mercury Plus 400 MHz or Bruker AVANCE NEO 500 MHz NMR spectrometers. Chemical shifts were expressed in parts per million (ppm) relative to internal TMS for 1H NMR data and deuterated solvent for ¹³C-NMR data. ¹H NMR coupling constants were expressed in Hz, with multiplicity denoted as follows: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet); dd (doublet of doublets); and td (triplet of doublets). LC-MS were performed on an Agilent 2100 system with C₁₈ column (5.0 µm, 6.0 x 50 mm). The mobile phases were ACN and H₂O both containing 0.05% trifluoroacetic acid. A linear gradient was used to increase from 25:75 MeOH/H₂O to 100% MeOH in 7.0 min at a flow rate of 0.7 mL/min. UV detections were conducted at 210 nm, 254 nm and 280 nm.

2. General procedures for the synthesis of GBB products 4

The GBB reactions for making imidazo[1,2-*a*] pyridines 4 were conducted using aminopyridines 1 (0.5 mmol), isocyanides 3 (0.6 mmol, 1.2 equiv.), and furfuraldehyde 2 (0.6 mmol, 1.2 equiv.) in 3:1 DCM/MeOH (4 mL) using Yb(OTf)₃ (0.04 mmol, 0.08 equiv.) as a Lewis acid catalyst under microwave irradiation at 100 °C for 1 h (Scheme 2, Table S1). Nineteen distinct adducts 4 were obtained in 89–98% yields. The reaction of GBB adducts 4 with acryloyl chloride 5 (1.5 equiv.) in the presence of Et₃N (2 equiv.) at room temperature in anhydrous CH₂Cl₂ for 6 h afforded 19 *N*-acylated compounds 6 in 80c90% yields after flash chromatography with 1:6 EtOAc/hexanes Scheme 2, Table S2) [10].

3. General procedures of N-acylation for the synthesis of products 6

Reactions of **4** with acryloyl chloride **5** (1.5 equiv.) in the presence of Et_3N (2 equiv.) at room temperature in anhydrous CH₂Cl₂ for 6 h afforded 19 *N*-acylated compounds **6** in 80–90% yields (Table S2) [10]. Further purification was conducted by flash chromatography with 1:6 EtOAc/hexanes.

4. General procedures for IMDA and dehydrative re-aromatization for making products 8

In the presence of 0.08 equiv. Lewis's acid AlCl₃, *N*-acylation products **6** (0.1 mmol) in dichlorobenzene were heated at 180 °C for 4 h (Table 2). The reaction mixtures were checked by LC-MS to follow the formation of DA adducts 7 and the ring opening products **8** (Figure S1). After 4 h, the reaction mixtures were worked up and the crude products were purified 30:70 EtOAc/hexanes. Product structures were confirmed by ¹H-, ¹³C-NMR analysis and x-ray crystal structure analysis of **8a**.

Table S1. Three-component GBB cycloaddition for the syntheses of 4

Table S2. N-acylation of fused imidazo[1,2-a]pyridines

^a Reactions of 6 were carried out using AlCl₃ (10 mol%) in 1,2-dichlorobenzene at 180 °C for 4 h.

5. LC-MS detection IMDA adduct 7a

Figure S1: LC-MS of overserving IMDA adduct 7a

6. X-ray crystallography report of 8a and 6t

X-ray Crystallographic Analysis of 8a (CCDC: 2429172)

8a

Cell	a = 19.882(3) Å; $b = 7.8944(9)$ Å; $c = 20.396(3)$ Å			
Temperature	a= 90°; b= 90°; g = 90°. 300(2) K			
	Calculated	Reported		
Volume	3201.3(7) Å ³	3201.3(7) Å ³		
Space group	Pbca	Pbca		
Moiety formula	C ₁₈ H ₁₆ BrN ₃ O	C ₁₈ H ₁₆ BrN ₃ O		
Sum formula	C ₁₈ H ₁₆ BrN ₃ O	C ₁₈ H ₁₆ BrN ₃ O		
Ζ	8	8		
μ (mm ⁻¹)	2.576	2.576		
F000	1504	1504		
CCDC: 2429172				

X-ray Crystallographic Analysis of 6t (CCDC: 2429579)

Cell	a = 11.5629(12) Å; b = 11.0333(12) Å; c = 14.0321(16) Å		
Temperature	a= 90°; b= 106.650°; g = 300(2) K	90°.	
	Calculated	Reported	
Volume	1715.1(3) Å ³	1715.1(3) Å ³	
Space group	$P2_1/n$	$P2_1/n$	
Moiety formula	C ₁₈ H ₁₉ N ₃ OS	$C_{18}H_{19}N_3OS$	
Sum formula	$C_{18}H_{19}N_3OS$	$C_{18}H_{19}N_3OS$	
Z	4	4	
μ (mm ⁻¹)	2.576	2.576	
F000	1504	1504	
CCDC: 2429579			

7. Analytical characterization data of products 6a and 8.

N-(2-(4-bromofuran-2-yl)imidazo[1,2-a]pyridin-3-yl)-N-butylacrylamide (6a)

Light yello solid (90% yield), Chemical Formula: $C_{18}H_{18}BrN_3O_2$ ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 6.8 Hz, 1H), 7.63 (d, J = 9.1 Hz, 1H), 7.48 (s, 1H), 7.36 – 7.26 (m, 1H), 6.92 (t, J = 6.8 Hz, 1H), 6.81 (s, 1H), 6.43 (d, J = 16.7 Hz, 1H), 5.80 (dd, J = 16.7, 10.3 Hz, 1H), 5.50 (d, J = 10.4 Hz, 1H), 3.87 (ddd, J = 15.5, 10.1, 5.7 Hz, 1H), 3.67 (td, J = 13.3, 11.9, 5.9 Hz, 1H), 1.45 – 1.20 (m, 5H), 0.97 – 0.81 (m, 3H).

2-bromo-6-butylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8a)

Yellow solid (85% yield), Chemical Formula: $C_{18}H_{16}BrN_{3}O$. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, J = 1.9 Hz, 1H), 8.37 – 8.30 (m, 2H), 7.69 (d, J = 9.2 Hz, 1H), 7.63 (dd, J = 8.7, 1.9 Hz, 1H), 7.26 – 7.15 (m, 2H), 6.87 (t, J = 7.0 Hz, 1H), 4.63 (t, J = 7.9 Hz, 2H), 1.88 (q, J = 7.9 Hz, 2H), 1.59 – 1.50 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.49, 136.25, 134.18, 127.15, 124.05, 122.95, 122.55, 120.08, 118.14, 188.01, 116.2, 114.42, 111.95, 107.15, 41.19, 29.84, 17.89, 11.70. HRMS (ESI) calcd for $C_{18}H_{16}BrN_{3}O$ m/z): 369.0477, found 369.0480.

6-benzyl-2-bromopyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8b)

Light yellow solid (82% yield), C₂₁H₁₄BrN₃O. ¹H NMR (399 MHz,) ¹H NMR (399 MHz, CDCl₃) δ 8.55 (d, *J* = 2.0 Hz, 1H), 8.40 – 8.31 (m, 5H), 7.70 – 7.61 (m, 4H), 7.17 (dd, *J* = 9.6, 1.8 Hz, 2H), 4.61 (t, *J* = 7.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 150.11, 137.22, 130.26, 130.15, 128.91, 128.83, 126.34, 126.27, 125.09, 121.78, 120.76, 119.89, 105.06, 104.92, 46.57. HRMS (ESI) calcd for C₂₁H₁₄BrN₃O m/z): 403.0320, found 403.0341.

2-bromo-6-isopropylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8c)

Off-white solid (77% yield), Chemical Formula: $C_{17}H_{14}BrN_3O$. ¹H NMR (399 MHz, CDCl₃) δ 8.57 (d, J = 1.9 Hz, 1H), 8.37 – 8.30 (m, 2H), 7.69 (d, J = 9.2 Hz, 1H), 7.63 (dd, J = 8.7, 1.9 Hz, 1H), 7.26 – 7.15 (m, 1H), 6.87 (t, J = 7.0 Hz, 1H), 5.09 – 4.75 (m, 1H), 1.89 – 1.83 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 168.31, 148.22,131.85, 125.07, 124.08, 120.93, 120.05, 111.53, 110.24, 108.22, 106.30, 44.92, 20.05. HRMS (ESI) calcd for $C_{17}H_{14}BrN_3O$ m/z): 355.0320, found 355.0612.

2-bromo-6-cyclohexylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8d)

Off-white solid (70% yield), Chemical Formula: $C_{20}H_{18}BrN_{3}O$. ¹H NMR (399 MHz, CDCl₃) δ 8.38 – 8.31 (m, 1H), 8.26 (d, J = 8.5 Hz, 0H), 8.14 (d, J = 7.4 Hz, 1H), 7.69 (d, J = 9.3 Hz, 1H), 7.50 – 7.43 (m, 1H), 7.18 (s, 0H), 6.89 (t, J = 7.0 Hz, 1H), 4.39 (d, J = 12.1 Hz, 1H), 2.95 – 2.85 (m, 2H), 1.99 (dd, J = 26.2, 11.4 Hz, 5H), 0.85 (d, J = 17.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.43, 143.08, 135.90, 135.21, 130.56, 128.03, 126.58, 126.32, 125.90, 124.90, 121.56, 117.85, 113.39, 48.17, 30.63, 20.31, 13.70. 2-bromo-6-(2-morpholinoethyl)pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8e)

Yellow solid (66% yield), Chemical Formula: $C_{20}H_{19}BrN_4O_2$, ¹H NMR (399 MHz, CDCl₃) δ 8.72 (d, J = 7.9 Hz, 1H), 8.01 (s, 1H), 7.69 (s, 1H), 7.25 (d, J = 2.0 Hz, 4H), 4.74 (d, J = 24.6 Hz, 2H), 3.64 (s, 2H), 3.34 (s, 4H), 2.95 (d, J = 1.9 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 167.19, 147.17, 143.47, 130.29, 126.68, 121.92, 120.14, 119.91, 117.40, 111.64, 109.15, 63.15, 45.38, 44.68, 35.23, 28.69.

1-bromo-6-isopropylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8f)

Off-white solid (70% yield), Chemical Formula: $C_{17}H_{14}BrN_{3}O$. ¹H NMR (399 MHz, CDCl₃) δ 8.52 – 8.46 (m, 1H), 8.23 (d, J = 7.2 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 9.2 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.25 (d, J = 1.2 Hz, 1H), 6.88 (t, J = 7.0 Hz, 1H), 5.09 – 4.75 (m, 1H), 1.89 – 1.83 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.09, 129.30, 128.13, 125.96, 122.10, 118.48, 115.95, 113.54, 49.56, 20.76, 19.81. HRMS (ESI) calcd for $C_{17}H_{14}BrN_{3}O$ m/z): 355.0320, found 355.0718.

6-benzyl-1-bromopyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8g)

Light yellow solid (82% yield), Chemical Formula: $C_{21}H_{14}BrN_{3}O$. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dt, J = 9.1, 1.2 Hz, 1H), 7.42 (dd, J = 3.7, 1.1 Hz, 1H), 7.36 (dd, J = 5.1, 1.1 Hz, 1H), 7.21 – 7.04 (m, 6H), 7.01 (dt, J = 6.8, 1.2 Hz, 1H), 6.55 – 6.44 (m, 2H), 4.61 (t, J = 7.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.46, 135.54, 129.48, 129.45, 127.99, 127.36, 125.39, 123.62, 122.99, 119.63, 112.92, 47.40. HRMS (ESI) calcd for C₂₁H₁₄BrN₃O m/z): 403.0320, found 403.0568.

1-bromo-6-butylpyrido[2',1':2,3]*imidazo*[4,5-c]*isoquinolin-5(6H)-one* (8h)

Yellow solid (84% yield), Chemical Formula: $C_{18}H_{16}BrN_{3}O.$ ¹H NMR (399 MHz, CDCl₃) δ 8.57 (dd, J = 8.0, 1.4 Hz, 1H), 8.36 (d, J = 7.3 Hz, 1H), 8.09 – 8.02 (m, 1H), 7.80 (d, J = 9.3 Hz, 1H), 7.42 – 7.33 (m, 1H), 7.25 (d, J = 1.2 Hz, 1H), 7.22 – 7.13 (m, 1H), 6.91 – 6.83 (m, 1H), 4.67 (t, J = 7.8 Hz, 2H), 1.92 (t, J = 8.0 Hz, 2H), 1.56 (q, J = 7.5 Hz, 2H), 1.04 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.61, 141.77, 139.13, 131.05, 130.28, 129.15, 127.23, 126.55, 123.31, 122.58, 120.05, 117.10, 113.25, 43.26, 31.91, 19.96, 13.78. HRMS (ESI) calcd for $C_{18}H_{16}BrN_{3}O$ m/z): 369.0477, found 369.0424.

1-bromo-6-(2-morpholinoethyl)pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8i)

Deep yellow solid (76% yield), Chemical Formula: $C_{20}H_{19}BrN_4O_2$. ¹H NMR (399 MHz, CDCl₃) δ 8.57 (dd, J = 8.0, 1.4 Hz, 1H), 8.36 (d, J = 7.3 Hz, 1H), 8.09 – 8.02 (m, 1H), 7.80 (d, J = 9.3 Hz, 1H), 7.42 – 7.33 (m, 1H), 7.22 – 7.13 (m, 1H), 6.91 – 6.83 (m, 1H), 4.45 (ddd, J = 14.0, 7.3, 4.5 Hz, 2H), 3.61 – 3.50 (m, 3H), 3.45 (d, J = 7.1 Hz, 4H), 2.62 – 2.52 (m, 3H), 2.29 (ddd, J = 12.7, 7.1, 4.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.03, 132.73, 123.27, 118.21, 117.97, 117.02, 116.28, 115.91, 115.54, 115.26, 114.10, 106.98, 111.05, 100.31, 54.55, 43.29, 41.83, 35.27.

6-butyl-9-chloropyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (81)

White solid (76% yield), Chemical Formula: $C_{18}H_{16}CIN_3O$. ¹H NMR (399 MHz, CDCl₃) δ 8.52 (dd, J = 14.1, 8.1 Hz, 2H), 8.32 (d, J = 7.1 Hz, 1H), 7.86 – 7.77 (m, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.32 – 7.22 (m, 1H), 7.25 (s, 2H), 7.25 (s, 2H), 6.82 (t, J = 7.2 Hz, 1H), 4.65 (t, J = 7.9 Hz, 2H), 1.95 – 1.86 (m, 2H), 1.64 – 1.55 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 132.99, 129.22, 127.54, 124.76, 122.46, 121.53, 112.29, 43.05, 32.15, 19.97, 13.80. HRMS (ESI) calcd for $C_{18}H_{16}CIN_3O$: 325.0982, found 325.0915.

9-bromo-6-butylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8m)

White solid (80% yield), Chemical Formula: $C_{18}H_{16}BrN_{3}O$. ¹H NMR (399 MHz, CDCl₃) δ 8.51 (d, J = 8.7 Hz, 2H), 8.39 (d, J = 7.9 Hz, 1H), 7.81 (t, J = 7.7 Hz, 1H), 7.64 – 7.50 (m, 2H), 7.23 (dd, J = 13.4, 3.7 Hz, 2H), 4.63 (t, J = 7.8 Hz, 2H), 1.91 (q, J = 7.8 Hz, 2H), 1.12 – 1.03 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 133.13, 129.38, 127.53, 126.73, 122.63, 121.93, 119.50, 42.61, 29.69, 19.91, 13.76. HRMS (ESI) calcd for $C_{18}H_{16}BrN_{3}O$ m/z): 369.0477, found 369.0432.

10-bromo-6-butylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8n)

White solid (84% yield), Chemical Formula: $C_{18}H_{16}BrN_{3}O.^{1}H NMR$ (399 MHz, CDCl₃) δ 8.55 – 8.48 (m, 1H), 8.45 – 8.32 (m, 2H), 7.85 – 7.76 (m, 1H), 7.75 – 7.68 (m, 1H), 7.61 – 7.52 (m, 1H), 7.23 – 7.14 (m, 1H), 4.67 (t, *J* = 7.9 Hz, 2H), 1.92 (t, *J* = 7.7 Hz, 2H), 1.58 (h, *J* = 7.4 Hz, 2H), 1.16 (s, 2H), 1.08 – 1.00 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.19, 147.17, 143.47, 130.29, 129.38 126.68, 122.36, 121.92, 120.14, 119.91, 117.40, 111.64, 109.15, 48.15, 30.38, 20.23, 13.69. HRMS (ESI) calcd for $C_{18}H_{16}BrN_{3}O m/z$): 369.0477, found 369.0425.

6-isopropylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8p)

White solid (84% yield), Chemical Formula: $C_{17}H_{15}N_3O.^{1}H$ NMR (399 MHz, CDCl₃) δ 8.51 (d, 1H), 8.40 (d, 1H), 8.37 (d, 1H), 7.84 – 7.81 (m, 1H), 7.74 – 7.72 (m, 1H), 7.57 – 7.54 (m, 1H), 7.19 (t, 1H), 6.86 (t, *J* = 7.7 Hz, 1H), 4.93 (m, *I*H), 1.87 (d, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 143.05, 136.29, 130.21, 128.49, 128.42, 126.14, 122.38, 117.62, 115.35, 112.07, 51.15, 24.22. HRMS (ESI) calcd for $C_{17}H_{15}N_3O.$ m/z): 277.1215, found 277.1205.

6-benzylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8q)

Light yellow solid (82% yield), Chemical Formula: $C_{21}H_{15}N_{3}O.$ ¹H NMR (399 MHz, CDCl₃) δ 8.57 (d, J = 8.0 Hz, 1H), 8.48 (dd, J = 16.3, 8.0 Hz, 1H), 8.37 (d, J = 8.0 Hz, 1H), 8.26 (d, J = 7.8 Hz, 1H), 8.19 – 8.12 (m, 1H), 7.90 – 7.77 (m, 1H), 7.72 – 7.60 (m, 1H), 7.62 – 7.53 (m, 1H), 7.40 – 7.22 (m, 3H), 7.12 – 7.04 (m, 1H), 6.89 – 6.82 (m, 1H), 6.60 (t, J = 7.0 Hz, 1H), 4.62 (d, J = 7.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 133.36, 133.12, 129.61, 129.44, 129.35, 127.90, 127.44, 127.32, 125.45, 123.17, 122.94, 121.93, 117.64, 114.57, 46.85. HRMS (ESI) calcd for $C_{21}H_{15}N_{3}O$ m/z): 325.1215, found 325.1232.

6-butylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8r)

Deep yellow solid(80% yield), Chemical Formula: $C_{18}H_{17}N_3O$. ¹H NMR (399 MHz, CDCl₃) δ 8.55 – 8.48 (m, 1H), 8.45 – 8.32 (m, 2H), 7.85 – 7.76 (m, 1H), 7.75 – 7.68 (m, 1H), 7.61 – 7.52 (m, 1H), 7.28 – 7.14 (m, 1H), 6.92 – 6.83 (m, 1H), 4.67 (t, *J* = 7.9 Hz, 2H), 1.92 (t, *J* = 7.7 Hz, 2H), 1.58 (h, *J* = 7.4 Hz, 2H), 1.08 – 1.00 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.38, 143.03, 132.97, 131.60, 129.30, 127.15, 124.13, 123.46, 122.88, 122.77, 121.85, 119.15, 112.90, 42.77, 32.17, 20.00, 13.82. HRMS (ESI) calcd for $C_{18}H_{17}N_3O$ m/z): 291.1372, found 291.1369.

6-(2-morpholinoethyl)pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5(6H)-one (8s)

Yellow solid (60% yield), Chemical Formula: $C_{20}H_{20}N_4O_2$. ¹H NMR (399 MHz, CDCl₃) δ 8.77 (s, 1H), 8.50 (d, *J* = 8.2 Hz, 1H), 8.42 (d, *J* = 8.0 Hz, 1H), 7.82 (t, *J* = 7.5 Hz, 1H), 7.72 (d, *J* = 9.4 Hz, 1H), 7.57 (t, *J* = 7.7 Hz, 1H), 7.25 (s, 2H), 6.89 (t, *J* = 6.7 Hz, 1H), 4.82 (s, 2H), 3.72 (s, 5H), 3.63 (s, 2H), 2.95 (s, 2H), 2.88 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.07, 149.27, 143.22, 132.67, 131.59, 126.98, 126.41, 123.56, 117.06, 111.83, 111.22, 108.31, 66.58, 56.52, 52.12, 44.23.

8. ¹H-NMR, ¹³C-NMR spectra of products 6a and 8

¹H NMR of **6a**

¹H NMR of **8a**

¹³C NMR of **8a**

¹H NMR of **8b**

¹³C NMR of **8b** S15

¹³C NMR of **8c**

¹H NMR of **8d**

¹³C NMR of **8d**

¹H NMR of **8e**

¹³C NMR of **8e**

¹H NMR of **8f**

¹³C NMR of **8f** S19

¹H NMR of **8g**

¹³C NMR of 8g

¹³C NMR of **8h**

100 90

80 70

30 20 10 0 -10

120 110 f1 (ppm)

130

230

220 210

200

170

150

140

160

¹H NMR of 8i

¹³C NMR of **8i**

¹H NMR of 8I

¹³C NMR of **8I** S23

¹H NMR of 8m

¹³C NMR of **8m**

¹H NMR of **8n**

¹³C NMR of **8n** S25

¹H NMR of **8p**

¹³C NMR of **8p** S26

¹H NMR of **8q**

¹³C NMR of **8q**

¹³C NMR of **8r**

¹H NMR of **8s**

