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Abbreviations

CPD contact potential difference

H-SCM heterodyne Scanning Capacitance Microscopy
EFM Electrostatic Force Microscopy

F14H20 Perfluoroalkyl-Alkane F(CF,),,(CH,),,H
H-KPFM Heterodyne Kelvin Probe Force Microscopy

Supporting Information

Supporting information features a comparison of the working principles of Heterodyne Kelvin
Probe Force Microscopy (H-KPFM) and heterodyne Scanning Capacitance Microscopy (H-SCM),
all the raw and normalized data of the H-SCM frequency spectroscopy, the full comparison of the
H-SCM, SF-Electrostatic Force Microscopy (EFM), and H-KPFM images on the Perfluoroalkyl-
Alkane F(CF,),,(CH,),,H (F14H20) structures, and finally a comparison of the model data and the

measured data on the microcapacitors.
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Figure S1: Schematic comparison of the excitation and detection frequencies in H-KPFM and
H-SCM. The lower part shows the transfer function of the cantilever, where the amplitude is plot-
ted vs the logarithmic angular frequency. The upper part shows the excitation frequencies () and
the detection frequencies (T) of the applied frequencies. The red arrow corresponds to topography-
and the blue arrow to the electrical signal. Representation of Fig. S1 was inspired by [1,2].
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Figure S2: Non-normalized data of the comparison of the C” frequency sweep shown in Fig-
ure 6 on the four spots while in H-SCM (see eq. (8)). This was conducted with the yumasch’s

HQ:NSC18/Pt cantilever.
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Figure S3: Zoom of the non-normalized data from the comparison of the C” frequency sweep
shown in Figure 6 on the four spots while in H-SCM (see eq. (8)). This was conducted with the

umasch’s HQ:NSC18/Pt cantilever.
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Figure S4: Normalized data of the C” frequency sweep shown in Figure 6 on the three spots while
in H-SCM (see eq. (8)). This was conducted with the ymasch’s HQ:NSC18/Pt cantilever.
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Figure S5: Zoomed and normalized data of the C” frequency sweep shown in Figure 6 on the

three spots while in H-SCM (see eq. (8)). This was conducted with the umasch’s HQ:NSC18/Pt
cantilever.
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Figure S6: Non-normalized data of the phase signal ¢ spectra of the comparison from the C”
frequency sweep shown in Figure 6 on the four spots while in H-SCM (see eq. (8)). This was
conducted with the umasch’s HQ:NSC18/Pt cantilever.
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Figure S7: Zoom of the non-normalized data of the phase signal ¢ spectra of the comparison from
the C” frequency sweep shown in Figure 6 on the four spots while in H-SCM (see eq. (8)). This
was conducted with the ymasch’s HQ:NSC18/Pt cantilever.
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Figure S8: Non-normalized data of the comparison of the C’ frequency sweep shown in Figure
6 on the four spots while in SF-EFM mode (see eq. (9)). This was conducted with the ymasch’s
HQ:NSC18/Pt cantilever.
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Figure S9: Zoom of the non-normalized data of the comparison of the C” frequency sweep shown
in Figure 6 on the four spots while in SF-EFM mode (see eq. (9)). This was conducted with the
pumasch’s HQ:NSC18/Pt cantilever.
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Figure S10: Normalized data of the C” frequency sweep shown in Figure 6 on the three spots

while in SF-EFM mode (see eq. (9)). This was conducted with the umasch’s HQ:NSC18/Pt can-
tilever.
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Figure S11: Zoomed and normalized data of the C’ frequency sweep shown in Figure 6 on

the three spots while in SF-EFM mode (see eq. (9)). This was conducted with the umasch’s
HQ:NSC18/Pt cantilever.
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Figure S12: Non-normalized data of the phase signal ¢ spectra of the comparison of the C’ fre-
quency sweep shown in Figure 6 on the four spots while in SF-EFM mode (see eq. (9)). This was
conducted with the umasch’s HQ:NSC18/Pt cantilever.
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Figure S13: Zoom of the non-normalized data of the phase signal ¢ spectra of the comparison of
the C’ frequency sweep shown in Figure 6 on the four spots while in SF-EFM mode (see eq. (9)).
This was conducted with the gmasch’s HQ:NSC18/Pt cantilever.
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F14H20 with (a) the topography, (b) the C”(9*C) picture at 1.59 and 1.98 MHz, (c) electric phase
@e1 of the C”(9°C) signal at 1.59 and 1.98 MHz, (d) the C’(AC) picture at 235.579 kHz, (e) elec-
tric phase ¢ of the C’(AC) signal at 235.579 kHz, (f) the CPD picture, (g) the C”(9*C) picture at
15.88 and 16.28 MHz, (h) electric phase ¢ of the C”(9>C) signal at 15.88 and 16.28 MHz, (i) the
picture of the mechanical amplitude at the resonance frequency of 74.580kHz, and (j) the picture

of the mechanical phase at the resonance frequency of 74.580 kHz. This was conducted with the
umasch’s HQ:NSC18/Pt Cantilever.
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Figure S15: A comparison of the measured C” values on various capacitors, as shown in Figure

2, 1s presented. The measurements, performed using the NuNano SPARK 70 Pt cantilever (solid
lines), are contrasted with the theoretical contributions of the respective components to the first nu-
merical derivative C” of the capacitance (dotted lines) as a function of the tip-to-sample distance, z
For the theoretical calculations, the properties of the NuNano SPARK 70 Pt cantilever (w = 30 um,
[ =225um, @ = 11deg, h = 12um, 6 = 25deg, r = 18nm, § = 3.7 - 10~7) with an mechanical
amplitude of A, = 10nm, an excitation voltage of Voc = 2V, and a total amount of calculated
points of 100,000, was used for these.
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Figure S16: A comparison of the measured C” values on various capacitors, as shown in Figure
2, is presented. The measurements, performed using the NuNano SPARK 70 Pt cantilever (solid
lines), are contrasted with the theoretical contributions of the respective components to the first nu-
merical derivative C” of the capacitance (dotted lines) as a function of the tip-to-sample distance, z.

For the theoretical calculations, the properties of the NuNano SPARK 70 Pt cantilever (w

[ =225um, a
amplitude of Ay,

30 um,

Ildeg, h = 12um, 6 = 25deg,r = 18nm, 6 = 3.7 - 10~7) with an mechanical

10 nm, an excitation voltage of Vac

points of 100,000, was used for these.
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