MCR-based C1 heteroannulations

Marios Zingiridis, Danae Papachristodoulou, Despoina Menegaki, Konstantinos G. Froudas and Constantinos G. Neochoritis

Supporting Information

Table of Contents

Experimental methods and materials	. 2
Synthetic Procedures and analytical data	. 3
General procedure for the synthesis of cyanoacetamides 1a-i	. 3
General procedures for the synthesis of the 2-aminothiophenes (GW-3CR) 2a-e and pyrimidones 5a-e	. 4
General procedures for the synthesis of the 2-aminoquinolines 3a-e and pyrimidones 6a-e	. 4
General procedures for the synthesis of the 2-aminoindoles 4a-e and pyrimidones 7a-e	. 5
Exemplary copies of NMR spectra of novel compounds	12
Single crystal x-ray structure determination	29

1. Experimental methods and materials

All the reagents and solvents were purchased from Sigma-Aldrich, AK Scientific, Fluorochem, Abcr GmbH, Acros and were used without further purification. Thin layer chromatography was performed on Millipore precoated silica gel plates (0.20 mm thick, particle size 25 μ m). Nuclear magnetic resonance spectra were recorded on Bruker Avance 500 spectrometers {¹H NMR (500 MHz), ¹³C NMR (125 MHz)}. Chemical shifts for ¹H NMR were reported as δ values and coupling constants were in hertz (Hz). The following abbreviations were used for spin multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, dd = double of doublets, dt = doublet of triplets, td = triplet of doublets, m = multiplet. Chemical shifts for ¹³C NMR were reported in ppm relative to the solvent peak. High resolution mass spectra were recorded using a LTQ-Orbitrap-XL (Thermo) at a resolution of 60000@m/z400.

2. Synthetic Procedures and analytical data

1g

General procedure for the synthesis of cyanoacetamides 1a-i1

Methyl cyanoacetate (15-30 mmol, 1.0 equiv.) and the corresponding amine (15-30 mmol, 1.0 equiv.) were added together into a 20 mL vial and stirred at rt. After 2 h, the precipitate is filtered and washed with cold diethyl ether, then dried on vacuum to give the desired products **1a-i** in quantitative yields (>95%).

CI

1i

1h

General procedures for the synthesis of the 2-aminothiophenes (GW-3CR) **2a-e**² and pyrimidones **5a-e**

To a stirred solution of phenylacetaldehyde (1.0 mmol, 1.0 equiv.) in EtOH (1.0 M), the corresponding cyanoacetamide (1.0 mmol, 1.0 equiv.), sulfur (1.0 mmol, 1.0 equiv.) and Et₃N (1 equiv., 1mmol) were added and the reaction mixture was stirred vigorously at 80 °C for 24 h. Then the reaction mixture was cooled down to rt. The solvent was removed under reduced pressure and the reaction mixture was diluted with ethyl acetate and extracted with water. The organic layer was collected and dried with sodium sulfate. The mixture was filtered and the solvent was removed under reduced pressure yielding the corresponding 2-aminothiophenes **2a-e**.

To a stirred solution of **2a-e** (0.8-1.0 mmol, 1.0 equiv.), formamide (1.6-2.0 mmoles, 2.0 equiv.) was added and the reaction mixture was stirred vigorously at 200 °C for 3 h. Then the reaction mixture was cooled down to rt, diluted with ethyl acetate and extracted with water. The solvent was removed under reduced pressure and the reaction mixture was diluted with chloroform. Hexane of the same amount was added and the mixture was left at 4 °C for 24 h. The precipitate was filtered and washed with hexane to yield compounds **5a-e**.

General procedures for the synthesis of the 2-aminoquinolines **3a-e**³ and pyrimidones **6a-e**

To a stirred solution of 2-aminobenzaldehyde (1.0 mmol, 1.0 equiv.) in EtOH (0.5 M), the corresponding cyanoacetamide (1.0 mmol, 1.0 equiv.) and NaOH (0.2 mmol, 0.2 equiv.) were added and the reaction mixture was stirred vigorously at 70 °C for 10 min. Then, it was cooled down to 0 °C. The precipitate was filtered and washed with cold ethanol affording the 2-aminoquinolines **3a-e**.

To a stirred solution of **3a-e** (0.8-1.0 mmol, 1.0 equiv.), formamide (1.6-2.0 mmol, 2.0 equiv.) was added and the reaction mixture was stirred vigorously at 200 °C for 3 h. Then the reaction mixture was cooled down to rt, diluted with ethyl acetate and extracted with water. The solvent was removed under reduced pressure and the reaction mixture was diluted with chloroform. Hexane of the same amount was added and the mixture was left at 4 °C for 16 h. The precipitate was filtered and washed with hexane. To a stirred solution of **3a-e** (0.6-1.0 mmol, 1.0 equiv.) in DMF (0.5 M), DIPEA (1.2-2.0 mmol, 2.0 equiv.) was added and the reaction mixture was stirred vigorously at 160 °C for 12-16 h. Then the reaction mixture was diluted with ethyl acetate and

extracted with water. The organic layer was collected and dried with sodium sulfate. The mixture was filtered and the solvent was removed under reduced pressure to yield compounds **6a-e**.

General procedures for the synthesis of the 2-aminoindoles 4a-e⁴ and pyrimidones 7a-e

To a stirred solution of the corresponding cyanoacetamide (1.0 mmol, 1 equiv) in DMF (0.5 M), NaH (60% dispersion in mineral oil, 1.0 equiv.) was added. After 10 min, 1-fluoro-2-nitrobenzene (1.0 mmol, 1.0 equiv.) was added and the reaction was stirred at rt for 24 h. The reaction becomes deep purple. Then, HCI (1.0 N, 2.0 mmol, 2 equiv.) was added followed by the addition of iron trichloride (3.0-3.6 mmol, 3.0 equiv.), Zn dust (10.0-12.0 mmol, 10 equiv.) and the reaction mixture was stirred vigorously at 100 °C for 1 h. The reaction mixture was filtered in celite and the filtrate was extracted with water and sodium hydrogencarbonate. The organic layer was collected and dried with sodium sulfate. The mixture was filtrated and the solvent was removed under reduced pressure and the reaction mixture was diluted with chloroform. Hexane of the same amount was added and the mixture was left at 4 °C for 24 h. The precipitate was filtered and washed with hexane affording the 2-aminoindoles **4a-e**.

To a stirred solution of **4a-e** (0.8-1.0 mmol, 1.0 equiv.), formamide (1.6-2.0 mmol, 2.0 equiv.) was added and the reaction mixture was stirred vigorously at 200 °C for 3 h. Then the reaction mixture was cooled down to rt, diluted with ethyl acetate and extracted with water. The solvent was removed under reduced pressure and the reaction mixture was diluted with chloroform. Hexane of the same amount was added and the mixture was left at 4 °C for 24 h. The precipitate was filtered and washed with hexane to yield compounds **7a-e**.

3-butyl-6-phenylthieno[2,3-d]pyrimidin-4(3H)-one (5a)

563 mg, 99% yield, brown solid. ¹H NMR (500 MHz, CDCl₃): 7.97 (s, 1H), 7.68 (s, 1H), 7.64 (d, J = 7 Hz, 2H), 7.42 (t, J = 7 Hz, 2H), 7.36-7.33 (m, 1H), 4.02 (t, J = 7.5 Hz, 2H), 1.79 (quint, J = 7.5 Hz, 2H), 1.42 (sext, J = 7.5 Hz, 2H), 0.98 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 163.0, 157.6, 146.4, 142.2, 133.5, 129.2, 128.7, 126.3, 126.1, 117.3, 46.9, 31.7, 20.0, 13.7; HRMS (ESI) m/z: [M-H]⁻ : C₁₆H₁₆N₂OS-H, calculated 283.091056; found 283.26413.

3-cyclohexyl-6-phenylthieno[2,3-d]pyrimidin-4(3H)-one (5b)

324 mg, 70% yield, brown solid. ¹H NMR (500 MHz, CDCl₃): 8.05 (s, 1H), 7.68 (s, 1H), 7.65 (d, *J* = 7 Hz, 2H), 7.42 (t, *J* = 7 Hz, 2H), 7.34 (t, *J* = 7 Hz, 1H), 4.85 (tt, *J*₁ = 12 Hz, *J*₂ = 3.5 Hz, 1H), 2.04-2.02 (m, 2H), 1.96-1.93 (m, 2H), 1.81-1.78 (m, 1H), 1.65-1.49 (m, 4H), 1.36-1.21 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 162.4, 157.1, 143.8, 141.8, 133.4, 129.1, 128.5, 126.1, 125.5, 117.3, 53.2, 33.0, 25.9, 25.2; HRMS (ESI) m/z: $[M-H]^-$: C₁₈H₁₈N₂OS-H, calculated 309.106706; found 309.17206.

3-(naphthalen-2-ylmethyl)-6-phenylthieno[2,3-d]pyrimidin-4(3H)-one (5c)

105 mg, 30% yield, brown solid. ¹H NMR (500 MHz, CDCl₃): 8.01 (d, J = 8.5 Hz, 1H), 7.91-7.88 (m, 3H), 7.76 (s, 1H), 7.66-7.64 (m, 2H), 7.58-7.52 (m, 3H), 7.49-7.42 (m, 2H), 7.39-7.36 (m, 2H), 5.69 (s, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 162.9, 157.6, 145.9, 142.5, 134.1, 133.4, 131.1, 130.9,

129.7, 129.3, 129.2, 128.8, 127.4, 127.4, 126.6, 126.3, 125.8, 125.5, 123.1, 117.4, 46.7; HRMS (ESI) m/z: $[M-H]^-$: $C_{23}H_{16}N_2OS-H$, calculated 367.091056; found 367.03128.

3-(furan-2-ylmethyl)-6-phenylthieno[2,3-d]pyrimidin-4(3H)-one (5d)

106 mg, 38% yield, brown solid. ¹H NMR (500 MHz, CDCl₃): 8.12 (s, 1H), 7.68 (s, 1H), 7.63 (d, J = 7 Hz, 2H), 7.43-7.39 (m, 3H), 7.36-7.33 (m, 1H), 6.49 (dd, $J_1 = 3.5$ Hz, $J_2 = 1$ Hz, 1H), 6.36 (dd, $J_1 = 3.5$ Hz, $J_2 = 2$ Hz, 1H), 5.21 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 162.8, 157.0, 148.1, 145.9, 143.3, 142.3, 133.2, 129.1, 128.6, 126.1, 125.8, 117.1, 110.8, 110.3, 41.9; HRMS (ESI) m/z: [M-H]⁻ : C₁₇H₁₂N₂O₂S-H, calculated 307.054671; found 306.91909.

6-phenyl-3-(thiophen-2-ylmethyl)thieno[2,3-d]pyrimidin-4(3H)-one (5e)

144 mg, 45% yield, brown solid. ¹H NMR (500 MHz, CDCl₃): 8.09 (s, 1H), 7.70 (s, 1H), 7.63 (d, J = 7 Hz, 2H), 7.42 (t, J = 7 Hz, 2H), 7.37-7.33 (m, 1H), 7.29 (dd, $J_1 = 5$ Hz, $J_2 = 1.5$ Hz, 1H), 7.17 (dd, $J_1 = 3.5$ Hz, $J_2 = 1$ Hz, 1H), 6.98 (dd, $J_1 = 5$ Hz, $J_2 = 3.5$ Hz, 1H), 5.37 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 162.8, 157.1, 145.6, 142.4, 137.3, 133.2, 129.1, 128.7, 128.0, 127.1, 126.8, 126.1, 125.8, 117.1, 44.2; HRMS (ESI) m/z: [M-H]⁻ : C₁₇H₁₂N₂OS₂-H, calculated 323.031828; found 323.11362.

3-butylpyrimido[4,5-b]quinolin-4(3H)-one (6a)

82 mg, 65% yield, brown solid. ¹H NMR (500 MHz, DMSO): 9.34 (s, 1H), 8.66 (s, 1H), 8.29 (dd, $J_1 = 8.5$ Hz, $J_2 = 1.5$ Hz, 1H), 8.10 (dd, $J_1 = 8.5$ Hz, $J_2 = 1$ Hz, 1H), 7.97-7.94 (m, 1H), 7.70-7.67 (m, 1H), 4.01 (t, J = 7.5 Hz, 2H), 1.71 (quint, J = 7.5 Hz, 2H), 1.35 (sext, J = 7.5 Hz, 2H), 0.93 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, DMSO): δ 161.1, 155.6, 151.9, 150.6, 138.6, 132.9, 129.5, 128.5, 126.7, 126.3, 116.1, 45.7, 30.7, 19.3, 13.6; HRMS (ESI) m/z: [M+H]⁺ : C₁₅H₁₅N₃O+H, calculated 254.128791; found 254.12789

3-(furan-2-ylmethyl)pyrimido[4,5-b]quinolin-4(3H)-one (6b)

128 mg, 47% yield, brown solid. ¹H NMR (500 MHz, DMSO): 9.35 (s, 1H), 8.74 (s, 1H), 8.30 (dd, $J_1 = 8$ Hz, $J_2 = 1.5$ Hz), 8.10 (d, J = 8.5 Hz), 7.98-7.95 (m, 1H), 7.71-7.68 (m, 1H), 7.64 (d, J = 2 Hz, 1H), 6.53 (d, J = 3 Hz, 1H), 6.45-6.44 (m, 1H), 5.26 (s, 2H); ¹³C NMR (125 MHz, DMSO): δ 160.7, 155.4, 151.3, 150.6, 149.3, 143.3, 138.9, 133.1, 129.6, 128.5, 126.9, 126.4, 116.1, 110.8, 109.1, 41.8; HRMS (ESI) m/z: [M+H]⁺ : C₁₅H₁₅N₃O+H, calculated 278.09240; found 278.09129.

3-(3-ethoxypropyl)pyrimido[4,5-b]quinolin-4(3*H*)-one (6c)

144 mg, 51% yield, brown solid. ¹H NMR (500 MHz, DMSO): 9.31 (s, 1H), 8.59 (s, 1H), 8.29 (dd, $J_1 = 8.5$ Hz, $J_2 = 1.5$ Hz, 1H), 8.09 (d, J = 9 Hz, 1H), 7.96-7.93 (m, 1H), 7.69-7.66 (m, 1H), 4.08 (t, J = 7 Hz, 2H), 3.44 (t, J = 6 Hz, 2H), 3.36 (q, J = 7 Hz, 2H), 1.97 (quint, J = 6.5 Hz, 2H), 1.01 (t, J = 7 Hz, 3H); ¹³C NMR (125 MHz, DMSO): δ 161.2, 155.6, 152.0, 150.6, 138.5, 132.9, 129.5, 128.5, 126.6, 126.3, 116.1, 67.1, 65.3, 44.1, 28.3, 15.0; HRMS (ESI) m/z: [M+H]⁺ : C₁₆H₁₇N₃O₂+H, calculated 284.13935; found 284.13834.

3-(3,3-diphenylpropyl)pyrimido[4,5-b]quinolin-4(3H)-one (6d)

203 mg, 52% yield, brown solid. ¹H NMR (500 MHz, DMSO): 9.30 (s, 1H), 8.48 (s, 1H), 8.28 (dd, $J_1 = 8.5$ Hz, $J_2 = 1.5$ Hz, 1H), 8.09 (d, J = 8.5 Hz, 1H), 7.97-7.93 (m, 1H), 7.70-7.67 (m, 1H), 7.36 (d, J = 7.5 Hz, 4H), 7.26 (t, J = 7.5 Hz, 4H), 7.12 (t, J = 7.5 Hz, 2H), 4.11 (t, J = 7.5 Hz, 1H), 3.96 (t, J = 7.5 Hz, 2H), 2.56 (q, J = 7.5 Hz, 2H); ¹³C NMR (125 MHz, DMSO): δ 161.6, 156.0, 152.2, 151.0, 144.7, 139.0, 133.3, 130.0, 128.9, 128.0, 127.1, 126.7, 126.7, 116.5, 48.8, 45.7, 33.9; HRMS (ESI) m/z: [M+H]⁺ : C₂₆H₂₁N₃O+H, calculated 392.17574; found 392.17440.

3-cyclohexylpyrimido[4,5-b]quinolin-4(3H)-one (6e)

153 mg, 55% yield, brown solid. ¹H NMR (500 MHz, DMSO): 9.34 (s, 1H), 8.74 (s, 1H), 8.30 (d, J = 8.5 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H), 7.97-7.93 (m, 1H), 7.69-7.66 (m, 1H), 4.65-4.59 (m, 1H), 1.88-1.87 (m, 6H), 1.70-1.66 (m, 1H), 1.46-1.43 (m, 2H), 1.29-1.22 (m, 1H); ¹³C NMR (125 MHz, DMSO): δ 160.8, 155.1, 150.7, 149.5, 138.9, 132.9, 129.5, 128.5, 126.6, 126.4, 115.9, 53.5, 31.1, 25.6, 24.7; HRMS (ESI) m/z: [M+H]⁺ : C₁₇H₁₇N₃O+H, calculated 280.14444; found 280.14340.

3-benzyl-3,9-dihydro-4*H*-pyrimido[4,5-b]indol-4-one (7a)

51 mg, 38% yield, brown solid. ¹H NMR (500 MHz, DMSO) δ 12.24 (s, 1H), 8.65 (s, 1H), 8.00-7.98 (m, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.38-7.32 (m, 5H), 7.30-7.22 (m, 2H), 5.27 (s, 2H); ¹³C NMR (125 MHz, DMSO) δ δ 157.3, 153.0, 150.2, 137.5, 135.7, 128.6, 127.6, 127.6, 124.4, 122.0, 121.2, 120.6, 111.7, 99.5, 48.3.; HRMS (ESI) m/z: [M-H]⁻: C₁₇H₁₃N₃O-H, calculated 274.098583; found 273.950011.

3-butyl-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (7b)

218 mg, 90% yield, white solid. ¹H NMR (500 MHz, DMSO): 12.16 (s, 1H), 8.45 (s, 1H), 8.01 (d, J = 8 Hz, 1H), 7.47 (d, J = 8 Hz, 1H), 7.35-7.32 (m, 1H), 7.26-7.22 (m, 1H), 4.04 (t, J = 7.5 Hz, 2H), 1.69 (quint, J = 7.5 Hz, 2H), 1.32 (q, J = 7.5 Hz, 2H), 0.92 (t, J = 7.5 Hz, 3H); ¹³C NMR (125 MHz, DMSO): δ 162.9, 157.4, 153.0, 150.0, 135.7, 124.2, 122.0, 121.1, 120.6, 111.6, 99.3, 45.1, 31.4, 19.3, 13.6; HRMS (ESI) m/z: [M-H]⁻ : C₁₄H₁₅N₃O-H, calculated 242.12879; found 242.12789.

3-(2-chlorobenzyl)-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (7c)

114 mg, 31% yield, yellow solid. ¹H NMR (500 MHz, DMSO): 12.31 (s, 1H), 8.57 (s, 1H), 7.97 (d, J = 8 Hz, 1H), 7.53-7.50 (m, 2H), 7.37-7.32 (m, 2H), 7.30-7.23 (m, 2H), 6.99 (dd, $J_1 = 8$ Hz, $J_2 = 1.5$ Hz, 1H), 5.34 (s, 1H); ¹³C NMR (125 MHz, DMSO): δ 157.3, 153.1, 150.5, 135.8, 134.5, 131.8, 129.5, 129.2, 128.2, 127.5, 124.5, 122.0, 121.3, 120.6, 111.8, 99.4, 46.6; HRMS (ESI) m/z: [M+H]⁺ : C₁₇H₁₂CIN₃O+H, calculated 308,059611; found 308,97190.

3-(4-chlorobenzyl)-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (7d)

117 mg, 35% yield, yellow solid. ¹H NMR (500 MHz, DMSO) δ 12.26 (s, 1H), 8.65 (s, 1H), 8.00-7.95 (m, 2H), 7.48 (d, J = 8.1 Hz, 1H), 7.41 (s, 3H), 7.36-7.33 (m, 1H), 7.26-7.23 (m, 1H), 5.25 (s, 2H). ¹³C NMR (125 MHz, DMSO) δ 158.1, 153.8, 150.1, 136.5, 135.7, 132.7, 129.7, 128.6, 124.4, 122.3, 121.3, 120.6, 111.8, 100.3, 47.8. HRMS (ESI) m/z: [M-H]⁻: C₁₇H₁₂CIN₃O-H, calculated 308.059611; found 308.05953.

3-cyclohexyl-3,9-dihydro-4*H*-pyrimido[4,5-b]indol-4-one (7e)

91 mg, 34% yield, yellow solid. ¹H NMR (500 MHz, DMSO) δ 12.16 (s, 1H), 8.49 (s, 1H), 8.01 (d, J = 7.5 Hz, 1H), 7.47 (dt, $J_1 = 8.0$ Hz, $J_2 = 1.0$ Hz, 1H), 7.35-7.31 (m, 1H), 7.26-7.22 (m, 1H), 4.79-4.72 (m, 1H), 1.90-1.78 (m, 6H), 1.70 (d, J = 13.0 Hz, 1H), 1.47-1.40 (m, 2H), 1.30-1.22 (m, 1H). ¹³C NMR (125 MHz, DMSO) δ 157.6, 144.4, 128.6, 127.5, 126.3, 122.1, 88.7, 70.0, 32.1, 26.8. HRMS (ESI) m/z: [M+H]⁺: C₁₆H₁₇N₃O+H, calculated 266.129883; found 266.12988.

3. Exemplary copies of NMR spectra of novel compounds

3-butyl-6-phenylthieno[2,3-d]pyrimidin-4(3*H*)-one (5a)

3-cyclohexyl-6-phenylthieno[2,3-d]pyrimidin-4(3*H*)-one (5b)

3-(naphthalen-2-ylmethyl)-6-phenylthieno[2,3-d]pyrimidin-4(3*H*)-one (5c)

3-(furan-2-ylmethyl)-6-phenylthieno[2,3-d]pyrimidin-4(3*H*)-one (5d)

6-phenyl-3-(thiophen-2-ylmethyl)thieno[2,3-d]pyrimidin-4(3H)-one (5e)

3-butylpyrimido[4,5-b]quinolin-4(3*H*)-one (6a)

3-(furan-2-ylmethyl)pyrimido[4,5-b]quinolin-4(3*H*)-one (6b)

3-(3-ethoxypropyl)pyrimido[4,5-b]quinolin-4(3*H*)-one (6c)

нмвс

3-(3,3-diphenylpropyl)pyrimido[4,5-b]quinolin-4(3*H*)-one (6d)

3-cyclohexylpyrimido[4,5-b]quinolin-4(3*H*)-one (6e)

3-benzyl-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (7a)

3-butyl-3,9-dihydro-4*H*-pyrimido[4,5-b]indol-4-one (7b)

3-(2-chlorobenzyl)-3,9-dihydro-4H-pyrimido[4,5-b]indol-4-one (7c)

3-(4-chlorobenzyl)-3,9-dihydro-4*H*-pyrimido[4,5-b]indol-4-one (7d)

3-cyclohexyl-3,9-dihydro-4*H*-pyrimido[4,5-b]indol-4-one (7e)

4. Single crystal x-ray structure determination

A specimen of $C_{19}H_{21}N_3O_2$ was used for the X-ray crystallographic analysis. The X-ray intensity data were measured (λ = 1.54178 Å).

The total exposure time was 25.60 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 14243 reflections to a maximum θ angle of 59.08° (0.90 Å resolution), of which 2688 were independent (average redundancy 5.299, completeness = 99.8%, R_{int} = 4.08%, R_{sig} = 2.81%) and 2019 (75.11%) were greater than $2\sigma(F^2)$. The final cell constants of <u>a</u> = 5.33600(10) Å, <u>b</u> = 16.4504(4) Å, <u>c</u> = 21.5018(6) Å, β = 94.726(2)°, volume = 1881.00(8) Å³, are based upon the refinement of the XYZ-centroids of 4189 reflections above 20 $\sigma(I)$ with 6.774° < 20 < 116.5°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.870. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9880 and 0.9940.

The structure was solved and refined using the Bruker SHELXTL Software Package,⁵ using the space group P 1 21/c 1, with Z = 4 for the formula unit, $C_{19}H_{21}N_3O_2$. The final anisotropic full-matrix least-squares refinement on F² with 218 variables converged at R1 = 9.68%, for the observed data and wR2 = 31.64% for all data. The goodness-of-fit was 1.085. The largest peak in the final difference electron density synthesis was 0.711 e⁻/Å³ and the largest hole was -0.331 e⁻/Å³ with an RMS deviation of 0.079 e⁻/Å³. On the basis of the final model, the calculated density was 1.142 g/cm³ and F(000), 688 e⁻. The CCDC access number is: 2376493.

Identification code	DP_24		
Chemical formula	C ₁₉ H ₂₁ N ₃ O ₂		
Formula weight	323.39 g/mol		
Temperature	220(2) K		
Wavelength	1.54178 Å		
Crystal size	0.010 x 0.020 x 0.025 mm		
Crystal system	monoclinic		
Space group	P 1 21/c 1		
Unit cell dimensions	a = 5.33600(10) Å	α = 90°	
	b = 16.4504(4) Å	$\beta = 94.726(2)^{\circ}$	
	c = 21.5018(6) Å	γ = 90°	
Volume	1881.00(8) Å ³		
Z	4		
Density (calculated)	1.142 g/cm ³		
Absorption coefficient	0.606 mm ⁻¹		
F(000)	688		

 Table S1. Sample and crystal data for 7b.

Table 2. Data collection and structure refinement for 7b.

Theta range for data collection	3.39 to 59.08°		
Index ranges	-5<=h<=5, -18<=k<=16, -22<=l<=23		
Reflections collected	14243		
Independent reflections	2688 [R(int) = 0.0408]		
Coverage of independent reflections	99.8%		
Absorption correction	Multi-Scan		
Max. and min. transmission	0.9940 and 0.9880		
Refinement method	Full-matrix least-squares on F ²		
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$		
Data / restraints / parameters	2688 / 0 / 218		
Goodness-of-fit on F ²	1.085		
Final R indices	2019 data; I>2σ(I)	R1 = 0.0968, wR2 = 0.2876	
	all data	R1 = 0.1198, wR2 = 0.3164	
Weighting scheme	w=1/[$\sigma^2(F_0^2)$ +(0.1848P) ² +2.2846P] where P=(F_0^2 +2 F_c^2)/3		
Largest diff. peak and hole	0.711 and -0.331 eÅ ⁻³		
R.M.S. deviation from mean	0.079 eÅ ⁻³		

References

- Wang, K.; Nguyen, K.; Huang, Y.; Dömling, A. Cyanoacetamide Multicomponent Reaction (I): Parallel Synthesis of Cyanoacetamides. J Comb Chem 2009, 11 (5), 920– 927. https://doi.org/10.1021/cc9000778.
- (2) Wang, K.; Kim, D.; Dömling, A. Cyanoacetamide MCR (III): Three-Component Gewald Reactions Revisited. J Comb Chem 2010, 12 (1), 111–118. https://doi.org/10.1021/cc9001586.
- (3) Wang, K.; Herdtweck, Eberhardt, and Dömling, A. Cyanoacetamides (IV): Versatile One-Pot Route to 2-Quinoline-3- Carboxamides. 2012, 14 (Iv), 316–322.
- (4) Wang, K.; Herdtweck, E.; Dömling, A. One-Pot Synthesis of 2-Amino-Indole-3-Carboxamide and Analogous. ACS Comb Sci 2011, 13 (2), 140–146. https://doi.org/10.1021/co100040z.
- (5) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr C Struct Chem 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053229614024218.