Supporting Information

Divergent Role of PIDA and PIFA in the AIX₃ (X=Cl, Br) Halogenation of 2 Naphthol: A Mechanistic Study

Kevin A. Juárez-Ornelas,¹ Manuel Solís-Hernández,² Pedro Navarro-Santos,^{2,*} J. Oscar C. Jiménez-Halla^{1*} and César R. Solorio-Alvarado,^{1,*}

¹ Departamento de Quimica, Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N 36050, Guanajuato, Guanajuato, Mexico.

² CONAHCYT - Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Francisco J. Mujica S/N 58030, Morelia, Michoacán, México.

INDEX	PAGE
1. Computational details	S2
2. Reaction mechanism for the chlorination of 2-naphthol using the	
$PIFA-AICI_3$ (1:2) system. Geometries of intermediates and transitions	S2
states.	
3. Reaction mechanism for the bromination of 2-naphthol using the	
PIDA-AlCl ₃ (1:2) system. Geometries of intermediates and transitions	S5
states.	
4. Alternative mechanisms explored for the chlorination of 2-naphtol	
a. The PIFA-AlCl ₃ (1:1) system	S11
b. The PIFA-AlCl ₃ (1:2) system via the formation of $PhICl_2$	S13
c. The PIDA-AlCl ₃ (1:2) system via the formation of $PhICl_2$	S15
5. Alternative mechanisms explored for the bromination of 2-naphtol	
a. The PIFA-AlBr ₃ (1:2) system	S18
b. The PIFA-AlBr ₃ (1:2) system via the formation of PhIBr ₂	S21
c. The PIDA-AlBr ₃ (1:2) system via the formation of PhIBr ₂	S24

1. Computational details

The geometric optimization of reagents, adducts, transition states, and products was carried out employing the Gaussian 161 software at the gas phase. The potential energy surface was explored by using DFT calculations at the level of theory ω -B97XD/(6-311G(d,p),LANL08d)// ω -B97XD/6-31G(d). Once the critical points were found, the solvent effects were considered by performing energy calculations over each geometry using the polarizable continuum model (PCM) using the SMD proposed model of Truhlar and coworkers2. The geometries of the critical points of the proposed mechanisms are the following:

2. Reaction mechanism for the chlorination of 2-naphthol using the PIFA-AlCl₃ (1:2) system. Geometries of intermediates and transition states.

Reagents

Ι	-0.715876	-0.166764	-0.538108
С	-1.140209	1.555499	0.561082
С	-0.766600	1.570977	1.899351
С	-1.759824	2.623374	-0.075213
С	-1.036188	2.721874	2.629104
Н	-0.277442	0.721290	2.361566
С	-2.016728	3.760240	0.678462
Η	-2.046658	2.567005	-1.116950
С	-1.656011	3.807506	2.021096
Η	-0.757162	2.764636	3.675395
Η	-2.500769	4.609976	0.211430
Η	-1.860619	4.701650	2.599260
0	3.006426	-0.042313	-0.092155
С	2.423303	0.886642	-0.684759
0	1.223533	1.005913	-0.988438
С	3.334480	2.083058	-1.061627
F	3.616245	2.766678	0.050565
F	4.468417	1.651033	-1.597470
F	2.736673	2.898461	-1.919193
0	-3.644695	0.406992	-1.415822
С	-3.606185	-0.509040	-0.650179
0	-2.536362	-1.013560	-0.058681
С	-4.869255	-1.280262	-0.191760
F	-4.743266	-2.579965	-0.449764
F	-5.938139	-0.820118	-0.822479
F	-5.043994	-1.120102	1.121006

Al	2.780476	-1.774238	0.543400
Cl	1.697535	-2.708838	-1.055279
Cl	4.702110	-2.545019	0.884673
Cl	1.573446	-1.499104	2.286387

TS1-Cl

Ι	0.867926	-0.159466	-1.021628
С	0.694023	-1.483450	0.581382
С	0.217869	-1.017159	1.799471
С	1.012398	-2.816849	0.344727
С	0.043568	-1.942112	2.820456
Н	0.009598	0.031669	1.964762
С	0.820363	-3.720356	1.379397
Н	1.407531	-3.139729	-0.609496
С	0.334847	-3.284277	2.608468
Н	-0.330675	-1.601509	3.778661
Н	1.055962	-4.766476	1.222785
Н	0.187757	-3.999338	3.410234
0	-2.313161	0.208681	-0.182512
С	-2.453519	-0.763364	-0.994159
0	-1.570775	-1.297069	-1.640042
С	-3.899886	-1.303442	-1.086975
F	-4.224307	-1.879974	0.074207
F	-4.750336	-0.302215	-1.310876
F	-4.024658	-2.197042	-2.055060
0	3.778498	-1.244551	-0.701749
С	3.709395	-0.078956	-0.473453
0	2.622284	0.692298	-0.488854
С	4.933690	0.794107	-0.090396
F	5.104354	1.759652	-0.991887

F	6.023027	0.042866	-0.056945
F	4.753584	1.347193	1.104807
Al	-2.301016	1.768595	0.670258
Cl	0.261620	2.178457	0.502380
Cl	-3.285943	3.254403	-0.410357
Cl	-2.679402	1.438983	2.705595

I-1-Cl

Ι	0.852585	-1.184867	-0.109129
С	1.191965	0.884745	-0.062962
С	1.569170	1.515612	-1.239357
С	1.019383	1.555982	1.137760
С	1.785888	2.886927	-1.201403
Η	1.695957	0.962108	-2.161467
С	1.242249	2.927528	1.149535
Η	0.699991	1.036390	2.030850
С	1.623616	3.587812	-0.011968
Η	2.081221	3.404307	-2.107002
Η	1.111348	3.476550	2.074873
Η	1.794016	4.658479	0.008927
0	-1.214276	-0.690183	-0.577445
С	-1.952988	-0.245541	0.394579
0	-1.636009	-0.040817	1.537541
С	-3.395396	0.029854	-0.099752
F	-3.388786	0.969760	-1.052173
F	-3.939851	-1.077576	-0.613712
F	-4.168012	0.451323	0.893888
Cl	3.247016	-1.578880	0.282721

I-2-Cl

Ι	2.027269	-0.658431	-0.918673
С	1.875503	0.244562	0.968834
С	1.275935	1.491476	1.049061
С	2.337251	-0.463836	2.070291
С	1.134618	2.054713	2.311096
Η	0.913577	2.009709	0.169349
С	2.182532	0.123731	3.318337
Η	2.795439	-1.439635	1.968420
С	1.583280	1.373940	3.435754
Η	0.647358	3.017356	2.405426
Η	2.529547	-0.402223	4.200199

Η	1.458043	1.818968	4.416210
0	-1.133595	-0.242164	-0.306512
С	-0.881373	-1.425882	-0.008280
0	0.233160	-1.965388	-0.129053
С	-2.020813	-2.329147	0.527787
F	-2.938965	-1.603334	1.150489
F	-2.587207	-2.957914	-0.500998
F	-1.543317	-3.234106	1.373209
Cl	3.942469	0.614603	-1.554066
Al	-2.258618	1.231679	-0.493219
Cl	-4.015448	0.532184	-1.429718
Cl	-2.454652	1.983380	1.482797
Cl	-1.032364	2.474664	-1.723433

I-3-Cl (cation)

Ι	2.045080	-0.544362	-0.932900
С	1.849314	0.285537	0.957253
С	1.212787	1.522985	1.070145
С	2.351464	-0.430513	2.045543
С	1.076734	2.055656	2.342357
Η	0.837028	2.056360	0.205417
С	2.198486	0.131428	3.303142
Н	2.844324	-1.387572	1.924856
С	1.567058	1.364408	3.447618
Н	0.587914	3.014215	2.467647
Н	2.576178	-0.396345	4.170480
Н	1.454682	1.792891	4.436848
Cl	4.101772	0.320243	-1.598168

I-3-Cl (anion)

0	-1.097329	-0.287438	-0.413100
С	-0.794318	-1.457448	0.030496
0	0.295522	-1.961748	0.066106
С	-2.012293	-2.294438	0.511133
F	-2.907286	-1.560446	1.181417
F	-2.641185	-2.840921	-0.543063
F	-1.632264	-3.294603	1.312070
Al	-2.174212	1.129173	-0.511512
Cl	-4.052609	0.546719	-1.381173
Cl	-2.428989	1.926602	1.469360
Cl	-1.188230	2.558521	-1.778665

Cl	1.491701	-1.665900	0.852624
С	-2.825305	-1.045598	-0.419419
С	-1.468078	-1.297089	-0.620586
С	-0.539203	-0.316673	-0.331131
С	-0.973723	0.932295	0.160701
С	-2.344306	1.168715	0.366019
С	-3.265300	0.179160	0.078484
С	0.929591	-0.579924	-0.484648
С	-0.019178	1.958882	0.393415
С	1.803220	0.634196	-0.378810
Н	1.156781	-1.106158	-1.413041
Н	-3.547738	-1.818830	-0.655623
Η	-1.147181	-2.263427	-0.995129
Н	-2.672842	2.131592	0.743344
Η	-4.322793	0.355291	0.233204
Η	-0.378931	2.908698	0.780457
С	1.329283	1.837718	0.122337
Н	2.000473	2.676871	0.270241
0	3.022647	0.427744	-0.767454
Н	3.610122	1.184229	-0.636596

I-4-Cl (anion)

0	-1.097329	-0.287438	-0.413100
С	-0.794318	-1.457448	0.030496
0	0.295522	-1.961748	0.066106
С	-2.012293	-2.294438	0.511133
F	-2.907286	-1.560446	1.181417
F	-2.641185	-2.840921	-0.543063
F	-1.632264	-3.294603	1.312070
Al	-2.174212	1.129173	-0.511512
Cl	-4.052609	0.546719	-1.381173
Cl	-2.428989	1.926602	1.469360
Cl	-1.188230	2.558521	-1.778665

TS2-Cl

0	1.228023	0.201738	-0.429031
С	0.623347	1.296799	-0.538860
0	-0.572370	1.429136	-0.831059
С	1.429970	2.600198	-0.316478
F	2.283367	2.762999	-1.324403
F	0.634134	3.654705	-0.251051
F	2.117037	2.508666	0.820956
Cl	-2.641515	-0.543891	-2.718478
Al	2.624709	-0.724788	0.358952
Cl	4.464979	0.153428	-0.150008
Cl	2.091818	-0.758599	2.414495
Cl	2.373773	-2.680380	-0.531502
С	-4.737966	0.807613	2.054905
С	-3.653472	0.023929	2.363250
С	-2.831784	-0.491315	1.340939
С	-3.123299	-0.191252	-0.009550
С	-4.230075	0.616067	-0.304455
С	-5.024659	1.097779	0.713199
Н	-1.502225	-1.550068	2.682323
Н	-5.370877	1.200722	2.842083
Н	-3.416852	-0.209090	3.396386
С	-1.725331	-1.339414	1.641159
С	-2.179778	-0.653401	-1.025184
Н	-4.461817	0.854992	-1.334348
Н	-5.883912	1.713084	0.469700
С	-1.212117	-1.638425	-0.687921
С	-0.947639	-1.903706	0.678723
Н	-1.276575	0.351687	-0.913259
Н	-0.134572	-2.569170	0.942194
0	-0.522110	-2.178536	-1.656179
Н	0.309295	-2.574690	-1.335799

-2.465281	0.342861	-0.433286
-1.677642	1.259851	-0.605200
-0.657865	1.177527	-1.380109
-2.045101	2.617193	0.046768
	-2.465281 -1.677642 -0.657865 -2.045101	-2.465281 0.342861 -1.677642 1.259851 -0.657865 1.177527 -2.045101 2.617193

F	-2.264795	2.469506	1.336800	Product
F	-1.074566	3.510347	-0.144814	0
F	-3.150053	3.063340	-0.540543	P P
Cl	1.910825	2.406771	-0.056046	
Al	-2.535644	-1.561977	-0.261858	Y Y Y
Cl	-4.433340	-2.057224	-1.003924	
Cl	-0.851348	-2.303066	-1.290962	
Cl	-2.304795	-1.661957	1.867237	
С	5.787370	-1.249820	-0.640844	C 3.281358 -0.121724 -0.000046
С	4.799736	-1.910871	0.035383	C 2.533034 1.023815 -0.000125
С	3.590236	-1.259248	0.377093	C 1.118876 0.970694 -0.000095
С	3.405047	0.099988	0.005383	C 0.473112 -0.295722 0.000019
С	4.445483	0.760356	-0.693813	C 1.272207 -1.465259 0.000098
С	5.603521	0.100117	-1.005120	C 2.638899 -1.376558 0.000067
Н	2.703526	-2.970367	1.356442	H 0.830149 3.114482 -0.000263
Н	6.710554	-1.757590	-0.897114	Н 4.364623 -0.068251 -0.000070
Н	4.928461	-2.950365	0.320570	Н 3.016247 1.996276 -0.000214
C	2.562056	-1.930212	1.083015	C 0.330671 2.150918 -0.000176
С	2.177907	0.720802	0.361894	C -0.947617 -0.313546 0.000043
Н	4.322878	1.797657	-0.9/92/2	Н 0.792770 -2.436488 0.000186
Н	6.389962	0.622622	-1.539207	Н 3.233417 -2.284143 0.000129
C	1.195/20	0.052531	1.048906	C -1.692822 0.841796 -0.000038
C	1.400951	-1.29901/	1.410912	C -1.029136 2.091863 -0.000150
H	-0.006051	1.890680	-1.238649	Н -1.642481 2.985366 -0.000212
Н	0.012897	-1.8295/1	1.934494	O -3.038803 0.876993 -0.000021
0	0.0348/0	0.090003	1.338412	Н -3.388876 -0.019404 0.000038
н	-0.522440	0.118545	1.900338	Cl -1.809818 -1.843615 0.000176

3. Reaction mechanism for the bromination of 2-naphthol using the PIDA-AICl₃ (1:2) system. Geometries of intermediates and transition states.

Re	agents		
	- 4		
Ι	-2.263209	-1.078661	-0.570870
С	-2.004985	0.968363	-0.226948
С	-1.166625	1.355920	0.806902
С	-2.664751	1.865353	-1.056092
С	-0.969506	2.716756	1.004533
Η	-0.663594	0.631866	1.435715
С	-2.450989	3.219348	-0.836415
Η	-3.336757	1.523444	-1.832058
С	-1.604145	3.640615	0.183964
Η	-0.296898	3.042702	1.788830
Η	-2.951704	3.944965	-1.467189
Η	-1.435951	4.700402	0.339236
0	0.882019	-0.582209	-0.690706
С	0.510137	-0.584914	-1.902107

-0.693305	-0.800166	-2.202692
1.487175	-0.329671	-3.004545
-5.128850	-0.076648	-0.381454
-4.882754	-0.654780	0.643882
-3.691776	-1.220866	0.906801
-5.834613	-0.840485	1.793802
2.381537	-0.140038	0.291061
1.723838	-0.574236	2.456837
4.089899	-1.481158	-0.470007
2.676693	2.109691	-0.151282
2.305621	-1.049589	-2.935420
1.001242	-0.394941	-3.974606
1.923136	0.663612	-2.866378
-5.986540	-1.904701	1.982505
-6.784027	-0.363263	1.560900
-5.407810	-0.405308	2.699124
	-0.693305 1.487175 -5.128850 -4.882754 -3.691776 -5.834613 2.381537 1.723838 4.089899 2.676693 2.305621 1.001242 1.923136 -5.986540 -6.784027 -5.407810	-0.693305-0.8001661.487175-0.329671-5.128850-0.076648-4.882754-0.654780-3.691776-1.220866-5.834613-0.8404852.381537-0.1400381.723838-0.5742364.089899-1.4811582.6766932.1096912.305621-1.0495891.001242-0.3949411.9231360.663612-5.986540-1.904701-6.784027-0.363263-5.407810-0.405308

Ι	-0.610262	-1.131574	-0.204055
С	1.205207	-0.158329	-0.024878
С	1.574307	0.747217	-1.021273
С	2.009720	-0.465958	1.074377
С	2.811617	1.359701	-0.900886
Η	0.913862	0.981175	-1.846655
С	3.240905	0.164513	1.164897
Η	1.693305	-1.169690	1.834684
С	3.636977	1.067980	0.182541
Η	3.129458	2.069085	-1.655376
Η	3.891129	-0.052152	2.003862
Η	4.602243	1.554325	0.263725
0	-1.601929	1.541072	-0.959859
С	-2.115977	1.286514	0.082208
0	-1.844436	0.099420	0.753307
С	-3.086537	2.097690	0.881287
Η	-3.256187	3.041410	0.368127
Η	-4.026404	1.553472	0.987576
Н	-2.689913	2.275880	1.881773

I-1-Br (anion)

O C

O C H H

H Al

Br Br

Br

	•	6
-1.307517	-0.032026	1.146309
-2.590953	-0.014221	0.857457
-3.056461	0.031643	-0.256281
-3.453626	-0.064595	2.104180
-3.270948	-1.002828	2.634457
-3.177060	0.747451	2.780441
-4.507645	0.009927	1.838568
0.111202	-0.001305	0.065304
0.175272	-1.896440	-1.299865
0.193572	1.972242	-1.181246

1.538469

1.936566 -0.054705

101-01

	<u>ک</u>		
		R	0
Ι	1.961573	-0.835124	-0.900981
С	1.668100	1.161101	-0.350960
С	1.562395	2.108924	-1.359877
С	1.575465	1.470528	0.999327
С	1.364445	3.430642	-0.986687
Н	1.606212	1.830558	-2.405261
С	1.390278	2.801931	1.344079
Н	1.654380	0.703176	1.755651
С	1.283096	3.774208	0.357604
Н	1.261924	4.189303	-1.753528
Н	1.303762	3.070131	2.390370
Н	1.116492	4.808115	0.637465
0	-0.632536	-0.904713	1.132236
С	-0.886658	-0.761654	2.411009
0	-1.917681	-0.190223	2.748062
С	0.103693	-1.344110	3.371250
0	3.383066	-1.037081	1.809891
С	4.227358	-0.965113	0.957761
0	3.959112	-0.825758	-0.353154
С	5.713222	-1.008716	1.192297
Al	-2.110200	-0.150863	0.356121
Br	-0.949498	-0.754623	-2.101682
Br	-4.000596	-1.401659	0.179612
Br	-2.165812	2.123991	0.140435
Η	1.119589	-1.286242	2.979609
Η	0.024991	-0.849606	4.337911
Η	-0.136236	-2.402576	3.506117
Н	6.172547	-0.090810	0.821774
Η	6.152289	-1.842108	0.641500
Η	5.905928	-1.121169	2.256918

I-2-Br

T	-0 174477	-0 954267	-0.218112
C	0.148754	1.119252	-0.105694
C	-0.188113	1.899273	-1.202323
Č	0.680868	1.644891	1.061435
Ċ	0.021155	3.269584	-1.118337
Н	-0.613275	1.459305	-2.095936
С	0.882375	3.019100	1.120878

Η	0.954676	1.002376	1.887231
С	0.553288	3.826353	0.039084
Η	-0.236621	3.900618	-1.961471
Η	1.299084	3.454565	2.021998
Н	0.711639	4.897551	0.098512
Br	-2.746778	-0.537175	0.277849
0	2.503597	-0.845847	1.369149
С	2.782976	-1.067786	0.212124
0	1.898229	-1.146310	-0.768026
С	4.193553	-1.279049	-0.285219
Η	4.272890	-2.246566	-0.784163
Η	4.890529	-1.231494	0.549372
Н	4.441817	-0.511509	-1.021009

I-3-Br

Ι	2.384800	-0.749225	0.792647
С	1.784464	1.181914	0.204222
С	1.215556	1.334704	-1.048615
С	1.925814	2.214956	1.117778
С	0.762900	2.599535	-1.399180
Н	1.096482	0.501132	-1.728571
С	1.461744	3.469566	0.741538
Н	2.369777	2.056435	2.092549
С	0.882792	3.658175	-0.507816
Н	0.286256	2.739319	-2.361865
Н	1.550361	4.297520	1.435484
Н	0.507406	4.636805	-0.783745
0	-0.794038	-0.569885	0.792434
С	-0.484383	-0.456837	2.016344
0	0.717521	-0.529867	2.382150
С	-1.533630	-0.224725	3.056791
Al	-2.259260	-0.264468	-0.286362
Br	-1.497494	-0.786092	-2.397981
Br	-3.933465	-1.650639	0.472523
Br	-2.695542	1.985395	0.025894
Н	-2.301755	-0.996835	2.979708
Η	-1.094848	-0.215807	4.051277
Η	-2.021846	0.732588	2.853319
Br	4.329494	-0.819230	-0.880687

TS2-Br

Ι	-0.271411	0.648683	-0.377844
С	-1.497555	0.066728	1.227569
С	-1.020030	-0.916040	2.080439
С	-2.749389	0.648860	1.378195
С	-1.852027	-1.350248	3.107514
Η	-0.025040	-1.326083	1.962218
С	-3.560464	0.204492	2.411684
Н	-3.093670	1.422777	0.704801
С	-3.115921	-0.797495	3.267851
Н	-1.496798	-2.112858	3.791403
Η	-4.545951	0.638226	2.536386
Н	-3.757349	-1.142424	4.071442
0	0.441782	-1.627063	-0.633867
С	1.472232	-2.338248	-0.696292
0	2.655029	-1.923334	-0.531716
С	1.318781	-3.799761	-1.021256
Br	-0.140223	3.053040	0.463099
С	-7.903928	-0.228481	-0.345065
С	-7.034698	-1.203534	0.062070
С	-5.684579	-1.195397	-0.367979
С	-5.240715	-0.158249	-1.231611
С	-6.166140	0.835061	-1.640649
С	-7.463398	0.800776	-1.206982
Н	-5.092955	-2.983411	0.699326
Η	-8.935420	-0.243224	-0.010011
Н	-7.370390	-1.998075	0.721949
С	-4.757647	-2.187927	0.041374
С	-3.886865	-0.135248	-1.647957
Н	-5.829432	1.625127	-2.304826
Н	-8.162331	1.566359	-1.526360
С	-3.022384	-1.094434	-1.203989
С	-3.454212	-2.142272	-0.360248
Н	-3.525726	0.651827	-2.301663
Η	-2.738707	-2.880153	-0.010128
0	-1.692330	-0.962837	-1.514370
Η	-1.186030	-1.773377	-1.357128
Н	1.224366	-3.901862	-2.106384
Н	0.414258	-4.202383	-0.564639
Н	2.193082	-4.362205	-0.700090
Al	3.590180	-0.401163	-0.123865
Br	2.824128	0.189379	1.982280
Br	3.006181	1.115345	-1.790892
Br	5.799009	-0.988877	-0.187594

1.934200	-0.085210	0.3910/4
-0.704664	0.963012	0.059542

С	-0.818622	2.061935	0.903431
С	0.244883	0.860615	-0.949822
С	0.074782	3.107375	0.715180
Η	-1.577182	2.115121	1.674964
С	1.135478	1.913647	-1.102496
Η	0.307696	-0.008046	-1.592000
С	1.049198	3.027335	-0.274854
Η	0.008825	3.983436	1.349527
Η	1.901316	1.853324	-1.866387
Η	1.749601	3.844481	-0.403460
Br	-3.884532	0.032863	-1.044146
С	5.442196	0.007853	-1.293970
С	4.888260	0.559814	-0.171258
С	3.704661	0.018233	0.388759
С	3.102047	-1.111875	-0.227726
С	3.703431	-1.666563	-1.384908
С	4.843336	-1.116691	-1.905649
Н	3.563105	1.431422	2.022057
Η	6.348713	0.426920	-1.715823
Н	5.352731	1.417167	0.305756
С	3.097324	0.577150	1.541730
С	1.905201	-1.639338	0.319087
Н	3.251953	-2.536748	-1.851027
Н	5.297812	-1.548413	-2.790327
С	1.344453	-1.045454	1.410486
С	1.932682	0.067865	2.043398
Η	1.429815	-2.503756	-0.133470
Η	1.458195	0.518492	2.909956
0	0.094419	-1.499838	1.832626
Η	0.020096	-1.443930	2.790015

I-4-Br (anion)

0	-1.307517	-0.032026	1.146309
С	-2.590953	-0.014221	0.857457
0	-3.056461	0.031643	-0.256281
С	-3.453626	-0.064595	2.104180
Η	-3.270948	-1.002828	2.634457
Η	-3.177060	0.747451	2.780441
Н	-4.507645	0.009927	1.838568
Al	0.111202	-0.001305	0.065304
Br	0.175272	-1.896440	-1.299865
Br	0.193572	1.972242	-1.181246
Br	1.936566	-0.054705	1.538469

			Â
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		<u> </u>	
Ι	-3.312910	-1.169965	0.784849
С	-2.063635	-0.798769	-0.857253
С	-0.857326	-1.482846	-0.937804
С	-2.435465	0.205297	-1.740508
С	0.020706	-1.120941	-1.950512
Н	-0.581220	-2.242615	-0.219466
С	-1.541948	0.540786	-2.750307
Н	-3.377850	0.728975	-1.640109
С	-0.318575	-0.110768	-2.845378
Н	0.978901	-1.622468	-2.025943
Н	-1.798728	1.332509	-3.444225
Н	0.389001	0.175625	-3.614679
0	0.039581	-0.849034	1.886981
С	1.188485	-0.352739	1.730564
0	2.043500	-1.016760	1.084273
С	1.546379	0.983446	2.306978
Br	-4.750184	-2.900606	-0.480455
С	-1.081715	5.901326	-1.209357
С	-1.999890	5.551901	-0.256301
С	-1.998150	4.251519	0.305180
С	-1.023829	3.315399	-0.131471
С	-0.085137	3.703756	-1.120178
С	-0.115966	4.966870	-1.646071
Η	-3.684114	4.562127	1.626177
Η	-1.090869	6.899411	-1.634032
Η	-2.741891	6.269575	0.080619
С	-2.942279	3.846619	1.284882
С	-1.027029	2.009133	0.413469
Н	0.661161	2.985590	-1.444769
Н	0.609823	5.257565	-2.397917
C	-1.954017	1.652486	1.359443
С	-2.925268	2.582301	1.801435
Н	-0.303360	1.289429	0.044637
H	-3.637990	2.270338	2.557023
0	-1.992764	0.385795	1.881313
Н	-0.894455	-0.158225	2.003163
H	2.419063	0.861013	2.952938
H	0.723163	1.41/653	2.8/1061
H	1.839038	1.664307	1.504106
Al	5.5/318/	-0./1419/	0.119/53
Br	5.252885	-0.239638	1.034096
Br Dr	3.014831	1.119449	-1.212008
DL	5.055570	-2.019900	-1.134028

the second	
۵ <u>۱</u>	<u>∽</u>

Ι	-1.130467	1.637360	-0.852914
С	-0.537830	0.998929	1.054520
С	-1.510886	0.774940	2.016767
С	0.800281	0.692581	1.255812
С	-1.117164	0.226017	3.230575
Η	-2.549348	1.021709	1.832825
С	1.170237	0.130537	2.470275
Η	1.538393	0.867376	0.484125
С	0.215225	-0.101982	3.451824
Η	-1.858658	0.050047	4.001773
Η	2.207413	-0.135226	2.638173
Η	0.511040	-0.541603	4.397979
Br	-0.798485	4.174283	-0.089292
С	3.632352	-3.973419	0.282147
С	2.357495	-3.938245	0.779244
С	1.381870	-3.078722	0.217817
С	1.739734	-2.247425	-0.877878
С	3.067432	-2.310768	-1.374617
С	3.989281	-3.149244	-0.808577
Η	-0.227846	-3.656010	1.545016
Η	4.372314	-4.634232	0.721208
Η	2.076711	-4.573274	1.614711
С	0.054211	-3.014662	0.714992
С	0.774150	-1.367307	-1.424149
Η	3.343247	-1.679879	-2.214685
Η	5.001386	-3.184793	-1.198383
С	-0.496188	-1.301105	-0.902336
С	-0.856179	-2.153990	0.175806
Н	1.046188	-0.718633	-2.252426
Н	-1.867562	-2.085376	0.560709
0	-1.417142	-0.420344	-1.349052

#### TS4-Br



Ι	-1.766399	-0.546019	-2.555653
С	-2.942029	-1.006139	-0.884129
С	-4.275265	-1.371051	-1.057123
С	-2.330956	-1.012690	0.367617
С	-5.010436	-1.746674	0.058262
Н	-4.730896	-1.361234	-2.040390

С	-3.079934	-1.399375	1.470943
Η	-1.291052	-0.729173	0.479682
С	-4.412732	-1.763025	1.314817
Η	-6.050310	-2.030762	-0.056151
Η	-2.619159	-1.415103	2.452005
Η	-4.993208	-2.062291	2.180685
Br	-1.797635	2.065318	-3.563109
С	4.053322	-4.417394	0.596885
С	2.704444	-4.631463	0.687092
С	1.815007	-4.062345	-0.256288
С	2.339911	-3.258643	-1.305071
С	3.742664	-3.056389	-1.372094
С	4.576793	-3.620771	-0.446063
Η	0.007099	-4.886634	0.603472
Η	4.726119	-4.858744	1.324512
Η	2.298455	-5.245157	1.486221
С	0.411623	-4.268164	-0.192706
С	1.453669	-2.675502	-2.241851
Η	4.145761	-2.445495	-2.174228
Η	5.647853	-3.459889	-0.510591
С	0.099250	-2.904223	-2.167154
С	-0.422907	-3.711101	-1.117321
Η	1.839501	-2.052269	-3.042578
Η	-1.494645	-3.879438	-1.081395
0	-0.739357	-2.384481	-3.086239

I-6-Br



Br	1.555836	-1.620144	1.136768
С	-2.840058	-1.041955	-0.470293
С	-1.485001	-1.293335	-0.637490
С	-0.543559	-0.324508	-0.312092
С	-0.964840	0.918666	0.181459
С	-2.328614	1.157817	0.353196
С	-3.262502	0.184368	0.031188
С	0.919434	-0.597036	-0.459100
С	0.022585	1.957154	0.471955
С	1.820055	0.635555	-0.524835
Η	1.149524	-1.251822	-1.296275
Η	-3.566505	-1.804511	-0.728778
Η	-1.152079	-2.256691	-1.011520
Η	-2.656489	2.119628	0.735795
Η	-4.320369	0.381218	0.166154
Η	-0.342462	2.875623	0.924004
С	1.319808	1.837357	0.162666
Η	2.031097	2.638731	0.324789
0	2.873258	0.601446	-1.112606

Product



С	3.511048	-0.859391	-0.000241
С	3.134105	0.454330	-0.000328
С	1.765423	0.820195	-0.000241
С	0.768411	-0.195883	-0.000073
С	1.193438	-1.549314	0.000014
С	2.524374	-1.867740	-0.000061
Η	2.130224	2.951394	-0.000436
Η	4.561717	-1.128547	-0.000310
Η	3.881928	1.241736	-0.000452
С	1.368465	2.178492	-0.000306
С	-0.598928	0.199277	0.000004
Η	0.450149	-2.336341	0.000156
Η	2.823610	-2.910644	0.000025
С	-0.957302	1.527127	-0.000044
С	0.049516	2.522336	-0.000215
Η	-0.243616	3.569295	-0.000288
0	-2.266093	1.864422	0.000029
Η	-2.356366	2.819031	0.000301
Br	-1.990577	-1.099939	0.000278



Reaction Coordinate

**Figure S1**. Energy profile for the chlorination of 2-naphthol in the presence of PIFA and AlCl₃ (1:1). Values represent the Gibbs free energy (in kcal/mol).

Step	Intermediate (I) / Transition State (TS)	ΔG [kcal/mol]
Reagents		0.0
TS ₁		9.7
I-1	CIOCF3	-15.5

**Table S1.** Structures of intermediates and transition states with their corresponding Gibbs free energies (in kcal/mol) for the chlorination of 2-naphthol in the presence of PIFA-  $AICl_3$  (1:1).

TS₂		0.7
I-2		-11.1
TS₃		5.4
I-3	H CI O	-48.8
TS4		-28.6
Product	CI H O	-53.1





**Figure S3**. Energy profile for the chlorination of 2-naphthol in the presence of PIFA and  $AlCl_3(1:2)$  via the formation of  $PhICl_2$ . Values represent the Gibbs free energy (in kcal/mol).

**Table S3.** Structures of intermediates and transition states with their corresponding Gibbs free energies (in kcal/mol) for the chlorination of 2-naphthol in the presence of PIFA -  $AlCl_3$  (1:2) via the formation of PhICl₂.

Step	Intermediate (I) / Transition State (TS)	ΔG [kcal/mol]
Reagents		0.0
TS1		9.7

TFOAc- AlCl2		
I-1		-15.5
I-2		-43.5
TS₂		-25.4
I-3		-32.6
TS₃		-11.1
I-4		-60.8
TS ₄		-44.3
I-5		-98.5
Product	I -O	1-Cl-2-NpOH

# 4. Alternative mechanisms explored for the chlorination of 2-naphtol



c. The PIDA-AlCl₃ (1:2) system via the formation of  $PhICl_2$ 

**Figure S4**. Energy profile for the chlorination of 2-naphthol in the presence of PIDA and  $AlCl_3$  (1:2) via the formation of PhICl₂. Values represent the Gibbs free energy (in kcal/mol).

**Table S4.** Structures of intermediates and transition states with their corresponding Gibbs free energies (in kcal/mol) for the chlorination of 2-naphthol in the presence of PIDA -  $AlCl_3$  (1:2) via the formation of PhICl₂.

Step	Intermediate (I) / Transition State (TS)	ΔG [kcal/mol]
Reagents		0.0

I-1		-39.1
TS1		-21.4
I-2		-28.7
I-3		-63.6
TS ₂	CI CI CI CI CI AI0 O CH ₃	-36.5
I-4		-57.1
TS₃		-35.6
I-5		-85.4
TS4		-68.9

I-6	H CI O	-123.1
Product	CI H O	-127.3



5. Alternative mechanisms explored for the bromination of 2-naphtol a. The PIFA-AlBr₃ (1:2) system

**Figure S5**. Energy profile for the bromination of 2-naphthol in the presence of PIFA and  $AlBr_3$  (1:2). Values represent the Gibbs free energy (in kcal/mol).

**Table S5.** Structures of intermediates and transition states with their corresponding Gibbs free energies (in kcal/mol) for the bromination of 2-naphthol in the presence of PIFA - AlBr₃ (1:2).

Step	Intermediate (I) / Transition State (TS)	ΔG [kcal/mol]
Reagents	TFA-I-O CF ₃	0.0
I-1	$TFA \xrightarrow{P} \oplus O \xrightarrow{Br} CF_3$	-27.4

TS1	$\begin{bmatrix} \vdots & Br & Br \\ TFA - IBr AIO \\ O & CF_3 \end{bmatrix}^{\ddagger}$	-16.8
TFOAc- AlBr2	F ₃ C Al	
I-2	Br-I-O CF ₃	-26.7
I-3	Br Br Br CF ₃	-61.1
I-4	$ \begin{array}{c}  Br \\  Br $	-61.7
I-5	Br GAI Br OH OCF3	-80.2
TS ₂	Br OH OH Br Br Br	-63.5
I-6	$ \begin{array}{c}             Br & Br & Br \\                                   $	-74.5

Product	Br H O	1-Br-2-NpOH
---------	-----------	-------------





**Figure S6**. Energy profile for the bromination of 2-naphthol in the presence of PIFA and  $AlBr_3$  (1:2). Values represent the Gibbs free energy (in kcal/mol) via the formation of PhIBr₂.

**Table S6.** Structures of intermediates and transition states with their corresponding Gibbs free energies (in kcal/mol) for the chlorination of 2-naphthol in the presence of PIFA - AlBr₃ (1:2), via the formation of PhIBr₂.

Step	Intermediate (I) / Transition State (TS)	ΔG [kcal/mol]
Reagents	TFA-I-O CF ₃	0.0
I-1	$TFA \xrightarrow{Br}_{O} O CF_{3}$	-27.4

TS1	$\begin{bmatrix} \vdots & Br & Br \\ TFA - IBrAIO \\ O & CF_3 \end{bmatrix}^{\ddagger}$	-16.8
I-2	Br-I-O CF ₃	-26.7
I-3	Br Br Br CF ₃	-61.1
TS ₂	$\begin{bmatrix} Br \\ Al = 0 \\ \cdots & Br \\ Br = l \\ Br = l \\ \vdots \\$	-50.4
I-4	Br-I-Br	-53.2
TS₃	Br, H, V, Br OBr	-31.9
I-5	O Br	-78.3

TS4	Image: state sta	-62.2
I-6	H H	-114.6
Product	Br H	-117.2



5. Alternative mechanisms explored for the bromination of 2-naphtol

c. The PIDA-AlBr₃ (1:2) system via the formation of PhIBr₂

**Figure S7**. Energy profile for the bromination of 2-naphthol in the presence of PIDA and AlBr₃ (1:2), via the formation of PhIBr₂, values represent the Gibbs free energy (in kcal/mol)

**Table S7.** Structures of intermediates and transition states with their corresponding Gibbs free energies (in kcal/mol) for the bromination of 2-naphthol in the presence of PIDA - AlBr₃ (1:2), via the formation of PhIBr₂.

Step	Intermediate (I) /	ΔG [kcal/mol]
	Transition State (TS)	
Reagents	AcO-I-O CH ₃	0.0
I-1	AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I AcO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO-I ACO	-31.3
TS1	$\begin{bmatrix} \vdots & Br & Br \\ AcO - I Br AI O \\ 0 & CH_3 \end{bmatrix}^{\ddagger}$	-23.0

I-2	Br-I-O CH ₃	-32.0
I-3	Br Br Br Br H Br H Br CH ₃	-67.2
TS ₂	$\begin{bmatrix} Br Br \\ \vdots \\ Br - Al \\ O \\ Br - l O \\ CH_3 \end{bmatrix}^{\ddagger}$	-13.9
I-4	Br-I-Br	-64.8
TS₃		-3.5
I-5		-89.9
TS4	Br Br	-73.8
I-6	H Br O	-126.2
Product	Br H O	1-Br-2-NpOH