BEILSTEIN ARCHIVES

This open access document is posted as a preprint in the Beilstein Archives at https://doi.org/10.3762/bxiv.2021.6.v1 and is considered to be an early communication for feedback before peer review. Before citing this document, please check if a final, peer-reviewed version has been published.

This document is not formatted, has not undergone copyediting or typesetting, and may contain errors, unsubstantiated scientific claims or preliminary data.

Preprint Title Total Synthesis of Pyrrolo[2,3-c]quinoline Alkaloid: Trigonoine B

Authors Takashi Nishiyama, Erina Hamada, Daishi Ishii, Yuuto Kihara, Nanase Choshi, Natsumi Nakanishi, Mari Murakami, Kimiko Taninaka, Noriyuki Hatae and Tominari Choshi

Publication Date 26 Jan. 2021
Article Type Full Research Paper
Supporting Information File 1 Supporting Information.pdf; 7.2 MB
ORCID ${ }^{\circledR}$ iDs Tominari Choshi - https://orcid.org/0000-0003-0233-8593

Total Synthesis of Pyrrolo[2,3-c]quinoline Alkaloid: Trigonoine B

Takashi Nishiyama, ${ }^{1}$ Erina Hamada, ${ }^{1}$ Daishi Ishii, ${ }^{1}$ Yuuto Kihara, ${ }^{1}$ Nanase Choshi, ${ }^{1}$ Natsumi Nakanishi, ${ }^{1}$ Mari Murakami, ${ }^{1}$ Kimiko Taninaka, ${ }^{1}$ Noriyuki Hatae, ${ }^{2}$ and Tominari Choshi*1

Address: ${ }^{1}$ Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan; ${ }^{2}$ Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy, 601 Matano, Totsuka-ku, Yokohama 245-0066, Japan

Email: Tominari Choshi*1 - choshi@fukuyama-u.ac.jp

* Corresponding author

Abstract

The first total synthesis of pyrrolo[2,3-c]quinoline alkaloid trigonoine B (1) was accomplished via a six-step sequence involving the construction of an N -substituted 4-aminopyrrolo[2,3-c]quinoline framework via electrocyclization of 2-(pyrrol-3yl)benzene containing a carbodiimide moiety as a 2-azahexatriene system. The employed six-step sequence afforded trigonoine B (1) in 9.2% overall yield. The described route could be employed for the preparation of various N -substituted 4aminopyrroloquinolines with various biological activities.

Keywords

pyrrolo[2,3-c]quinoline; trigonoine B; electrocyclization; 2-azahexatiriene system; carbodiimide

Introduction

In 2011, two novel alkaloids, namely trigonoine A and B, were isolated from the leaves of Trigonostemon lii by Hao and co-workers [1]. The structures of the compounds were elucidated through 1D and 2D NMR spectroscopy. It was determined that trigonoine A was a β-carboline alkaloid containing a 2,8-diazabicyclo[3.3.1]nonane ring system, while trigonoine B (1) was formed by a combination of 2,3-dihydroquinolin-4-one and $3 H$-pyrrolo[2,3-c]quinoline rearranged from a β-carboline skeleton (Fig. 1).

2: aplidiopsamine A

3a: marinoquinoline $A(R=M e)$
3b: marinoquinoline $\mathrm{B}(\mathrm{R}=i-\mathrm{Bu})$
3c: marinoquinoline C ($R=$ benzyl)
3d: marinoquinoline D ($\mathrm{R}=4$-hydroxybenzyl)
3e: marinoquinoline E ($R=$ indol-3-yl)
3f: marinoquinoline F ($R=$ indol-3-ylcarbonyl)
Figure 1: Natural products possessing the pyrrolo[2,3-c]quinoline skeleton.
Additionally, the anti-hepatitis B virus (HBV) activity of the alkaloids was evaluated in vitro using an HBV-transfected HepG2 cell line. The anti-human immunodeficiency virus (HIV) properties were also investigated to determine whether trigonoine A and B could prevent the cytopathic effects of HIV-1 IIIB in C8166 cells. Notably, it was found that both natural products exhibited anti-HIV activity.

In addition to trigonoine B, aplidiopsamine A [2] (2) and marinoquinolines [3] (3) are the natural products that possess the pyrrolo[2,3-c]quinoline skeleton (Fig. 1). These pyrrolo[2,3-c]quinolines have been demonstrated to show antimalarial and
antibacterial biological activities $[2,3]$. Thus, the development of a convenient and efficient synthetic route to the pyrrolo[2,3-c]quinoline skeleton has attracted considerable attention from organic and medicinal chemists. The total syntheses of aplidiopsamine $A[4,5]$ (2) and marinoquinolines [5,6] (3) have been achieved by various synthetic strategies. Nevertheless, the total synthesis of trigonoine B (1) has not yet been reported.

We have been interested in the synthesis of heterocyclic compounds by constructing fused pyridine ring systems based on a thermal electrocyclization of an azahexatriene moiety [7]. It has been hoped that the development of compounds with enhanced biological activity would be possible using these natural products and their derivatives [8]. We have previously reported the total syntheses of indolo[3,2-c]quinoline (isocryptolepine) [9], azaanthracenones (kalasinamide, marcanine A, and geovanine) [10], imidazo[4',5':4,5]pyrido[2,3-b]indole (grossularine-1 and -2) [11], imidazo[4,5b]pyridine (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and 2-amino-1,6-dimethylimidazo[4,5-b]pyridine) [12], and imidazo[4,5-c]quinoline (imiquimod) [13] based on electrocyclization of 2-azahexatriene involving an isocyanate moiety as the key intermediate.

In addition, we recently reported the total syntheses of marinoquinolines A (3a), B (3b), and $E(3 e)$ comprising the pyrrolo[2,3-c]quinoline skeleton [14]. As demonstrated in the Scheme 1, Curtius rearrangement of carboxylic acid 4 resulted in the formation of isocyanate 5 , followed by electrocyclization of 5 to furnish pyrrolo[2,3-c]quinoline 6 . Intermediate 6 was subsequently transformed into triflate 7, and the total syntheses of marinoquinolines $\mathbf{3 a}, \mathbf{3 b}$, and $\mathbf{3 e}$ were accomplished by introducing different substituents at the C4 position. However, despite our efforts to introduce dihydroquinoline derivatives into the triflate 7 using various conditions, the synthesis of

8 could not be achieved. Consequently, we decided to develop a new synthetic strategy for the preparation of trigonoine B (1).

Scheme 1: Total synthesis of marinoquinolines and introduction of tetrahydroquinoline moiety by direct amination to triflate 7.

Carbodiimides are valuable synthetic intermediates that can be obtained by an azaWittig reaction of isocyanates with iminophosphoranes or by dehydration of urea [15]. Molina et al. previously reported the synthesis of 2-aminopyridine derivatives by electrocyclization of conjugated carbodiimides derived from aza-Wittig reaction of iminophosphoranes and isocyanates [16]. We also achieved the preparation of mutagenic amino- α-carbolines 2-amino-9H-pyrido[2,3-b]indole (A $\alpha \mathrm{C}$) and MeA $\alpha \mathrm{C}$ by the electrocyclization of 3-alkenyl-2-carbodiimidoindole derivatives obtained by an azaWittig reaction of indol-2-yl iminophosphoranes and isocyanates [17].

In this work, we report the first total synthesis of trigonoine $B(1)$ involving the construction of a pyrrolo[2,3-c]quinoline framework by electrocyclization of 2-(pyrrol-3yl)benzene containing a carbodiimide moiety as a 2-azahexatriene system.

Results and Discussion

Scheme 2 illustrates the retrosynthetic strategy designed to synthesize triogonoine B (1). It was speculated that the dihydroquinoline moiety of trigonoine $B(1)$ could be constructed through a cycloamination reaction between positions C1a and N1. The synthesis of precursor pyrroloquinoline 9 possessing a substituted amino group at the 4-position could be achieved by electrocyclization of pyrrol-3-ylbenzene 10 containing a carbodiimide moiety as a 2-azahexatriene system. Lastly, it was proposed that carbodiimide 10 could be derived from urea 11.

Scheme 2: Retrosynthetic analysis of pyrrolo[2,3-c]quinoline ring construction.
Therefore, we investigated the electrocyclization of pyrrol-3-ylbenzene containing a carbodiimide moiety. First, 2-(pyrrol-3-yl)aniline 14 was synthesized by the SuzukiMiyaura coupling reaction of 2-iodoaniline (12) and 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-[tris(1-methylethyl)silyl]-1H-pyrrole (13) according to Pratt's
conditions (Scheme 3) [18]. Subsequently, to remove the triisopropylsilyl (TIPS) protecting group, 14 was treated with tetra-n-butylammonium fluoride (TBAF) in THF, affording aniline 15 in 65% yield. Treatment of 15 with phenyl isocyanate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave urea 16a in 54\% yield. To obtain carbodiimide 17a, 16a was treated with carbon tetrabromide $\left(\mathrm{CBr}_{4}\right), \mathrm{PPh}_{3}$, and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was monitored by TLC, which confirmed the complete consumption of the starting material. However, after the work up, extraction, and removal of solvent (in vacuo), the appearance of the TLC plate changed due to the formation of various byproducts. Then, the reaction mixture was purified, but the desired carbodiimide 17a was not obtained, and an aminopyrroloquinoline 18 in which electrocyclization of 17a proceeded was afforded in 25% yield. Notably, it was found that electrocyclization of 17a proceeded easily at low temperature ($\sim 60^{\circ} \mathrm{C}$).

Scheme 3: Synthesis of N -substituted 4-aminopyrrolo[3,2-c]quinoline 18.
Although we tried to optimize the reaction conditions to improve the yield of 18 , the yield could not be improved owing to the generation of numerous byproducts in the
reaction of $16 \mathbf{a}$ with $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$, and $\mathrm{Et}_{3} \mathrm{~N}$. Using the same procedure, carbodiimide 17b was then synthesized in 58% yield starting from aniline 14 via urea 16b. Based on the above results, it was speculated that the electrocyclization of $\mathbf{1 7 b}$ would proceed continuously following the removal of the TIPS group. When 17b was heated with TBAF in 1,2-dichlorobenzene (1,2-DCB) at $80^{\circ} \mathrm{C}$, the expected reaction proceeded and the desired pyrroloquinoline 18 was obtained in 58% yield.

We subsequently examined the versatility of the electrocyclization of carbodiimides 20a-d as 2-azahexatriene systems (Table 1). First, urea derivatives 19a-d were synthesized by reacting 2-(pyrrol-3-yl)aniline 14 with isocyanates, which were commercially available or prepared from an appropriate carboxylic acid through the Curtius rearrangement reaction (50-98\% yield). Treatment of urea derivatives 19a-d with $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$, and $\mathrm{Et}_{3} \mathrm{~N}$ afforded carbodiimides 20a-d in $64 \%-75 \%$ yield. Compounds 21a-d were obtained in situ following the removal of the TIPS protecting group in 20a-d by TBAF in $1,2-$ DCB at $80^{\circ} \mathrm{C}$. The electrocyclization then proceeded immediately, affording the desired pyrroloquinolines 22a-c in 49\%-90\% yield (entries $1-3)$. However, the cyclization of $\mathbf{2 0 d}$ only gave a mixture of unidentified products (entry 4).

Table 1: Synthesis of N-subsutituted 4-aminopyrrolo[3,2-c]quinolines 22 by electrocyclization of carbodiimides 20.

entry	R		19		20		22	
			Time (h)	Yield (\%)	Time (h)	Yield (\%)	Time (h)	Yield (\%)
1		a	12	50	4	64	2	90
2		b	12	96	1	_a	2	49 ${ }^{\text {b }}$
3		c	20	64	2	75	1	61
4		d	18	98	0.5	68	1	_c

${ }^{\text {a }}$ Since the carbodiimide 20b was unstable, the next reaction was carried out without purification. ${ }^{\text {b }}$ yield from 19b. ${ }^{\text {c }}$ unknown compounds.

Hence, we decided to evaluate the synthesis of 2,3-dihydroquinolin-4-one moiety of trigonoine B (1) by cycloamination of 22c (Scheme 4). The Buchwald-Hartwig amination of 22c was conducted in the presence of tBuONa, BINAP, and $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}$; however, the desired tetrahydroquinoline $\mathbf{2 3}$ was not obtained and only 22c was recovered. We then examined the conditions reported by Orito and coworkers [19]. The treatment of 22c with $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Cu}(\mathrm{OAc})_{2}$, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded 23 in 34% yield.

Scheme 4: Synthesis of tetrahydroquinoline moiety by cycloamination.

Scheme 5: Synthesis of trigonoine B (1).
The focus subsequently shifted to the total synthesis of trigonoine B (1) (Scheme 5). The key starting material, 2-iodo-5-methoxyaniline (24), was synthesized according to the procedure previously reported by Wetzel and co-workers [20]. Suzuki-Miyaura coupling of 2-iodoaniline derivative $\mathbf{2 4}$ and pyrrole-3-boronic acid pinacol ester $\mathbf{1 3}$ was carried out in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and SPhos, followed by the treatment of the resulting 2-(pyrrol-3-yl)aniline $\mathbf{2 5}$ with 3-(2-bromophenyl)propyl isocyanate 26a, which afforded urea 27a in a 60% yield. Treatment of urea 27a with CBr_{4} and PPh_{3} in the presence of Et3N then gave carbodiimide 28a in a good yield of 74%. Following the reaction of 28a with TBAF in 1,2-DCB and desilylation, the electrocyclization of 29a proceeded smoothly to afford the desired 4 -aminopyrroloquinoline 30a in 68% yield. Subsequently, cycloamination of $\mathbf{3 0 a}$ in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Cu}(\mathrm{OAc})_{2}$, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave tetrahydroquinoline 31 in a 25% yield. However, although attempts were
made to optimize the cycloamination reaction conditions, the yield could not be improved. We hypothesized that the low yield could be attributed to be the low reactivity of the bromo group. Thus, the same reaction was performed using a compound bearing a more reactive iodo group.

Accordingly, 4-aminopyrroloquinoline 30b was synthesized from the 2-(pyrrol-3yl)aniline 25 and 3-(2-iodophenyl)propyl isocyanate 26b in 3 steps using same procedures. Subsequently, cycloamination of 30b gave the tetrahydroquinoline $\mathbf{3 1}$ in 73% yield, resulting in a significant improvement in yield.

Finally, the oxidation of tetrahydroquinoline 31 were examined. As a result. Following the evaluation of various reaction conditions [21], the best outcome was obtained upon treatment of 31 with KMnO_{4} and MgSO_{4} in an acetone $-\mathrm{H}_{2} \mathrm{O}$ solvent system [22]. Employing these conditions, trigonoine B (1) was obtained in 43% yield. The acquired physical and spectroscopic data of trigonoine $B(\mathbf{1})$ synthesized herein are consistent with those of natural trigonoine B [1]. Thus, in this study, we successfully achieved the first total synthesis of trigonoine B.

Conclusion

The total synthesis of a pyrrolo[2,3-c]quinoline alkaloid, trigonoine $B(1)$, was achieved for the first time through electrocyclization of 2-(pyrrol-3-yl)benzene bearing a carbodiimide moiety as a 2-azahexatriene system. The employed six-step sequence afforded 1 in 9.2\% overall yield. Notably, the developed synthetic route could be used for the synthesis of various N -substituted 4-aminopyrroloquinolines. The biological activity of trigonoine B and its derivatives is under evaluation.

Experimental

General Experimental Details. All non-aqueous reactions were carried out under an atmosphere of nitrogen in dried glassware unless otherwise noted. Solvents were dried and distilled according to standard protocols. Analytical thin-layer chromatography was performed with Silica gel 60PF 254 (Merck). Silica gel column chromatography was performed with Silica gel 60 (70-230 mesh, Kanto Chemical Co. Lit.). All melting points were determined on Yanagimoto micro melting point apparatus and are uncorrected. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H} N \mathrm{NR}$) spectra were recorded on a JEOL AL300 at 300 MHz . Chemical shifts are reported relative to $\mathrm{Me}_{4} \mathrm{Si}(\delta 0.00)$. Multiplicity is indicated by one or more of the following: s (singlet); d (doublet); t (triplet); q (quartet); quin (quintet); sept (septet); m (multiplet); br (broad). Carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a JEOL AL-300 at 75 MHz . Chemical shifts are reported relative to $\mathrm{CDCl}_{3}(\delta 77.0)$ and DMSO-d ${ }_{6}(\delta 39.7$). Infrared spectra were recorded with ATR method using a Shimadzu FTIR-8000 spectrophotometer and Technologies DuraScop. Low and High-resolution mass spectra were recorded on JEOL JMS-700 spectrometers by direct inlet system.

2-(1-Triisopropylsilyl-1H-pyrrol-3-yl)aniline (14). A mixture of 2-iodoaniline (12) (249 mg, 1.1 mmol), 1-(triisopropylsilyl)-1H-pyrrole-3-boronic acid pinacol ester (13) ($500 \mathrm{mg}, 1.4 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($485 \mathrm{mg}, 2.3 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(9 \mathrm{mg}, 0.04 \mathrm{mmol})$, and SPhos (33 mg, 0.08 mmol) in $n-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL} / 2 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ for 2 h under N_{2} atmosphere. The reaction mixture was quenched with water, and then was extracted with EtOAc. The organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane (1:5 v/v) as an eluent to give the 2-(pyrrol-3yl)aniline 14 (248 mg, 84\%). Yellow oil; IR (ATR) v: $3290 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{dd}, J=7.5$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=7.5$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}$, $J=2.2$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=2.8$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{td}, J=7.5$ and 1.7 Hz , $1 \mathrm{H}), 6.74(\mathrm{dd}, J=7.5$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=2.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{br} \mathrm{s}$, 2 H), 1.47 (sept, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 143.6,129.7,126.9,124.7,123.8,122.6,122.3,118.6,115.5,110.7,17.8,11.7 ;$ HRMS (EI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{Si}, 314.2178$; found, 314.2180.

2-(1H-Pyrrol-3-yl)aniline (15). A solution of TBAF (1.0 M in THF, $0.21 \mathrm{~mL}, 0.21 \mathrm{mmol}$) was added dropwise to a solution of 2-(pyrrol-3-yl)aniline 14 ($56 \mathrm{mg}, 0.178 \mathrm{mmol}$) in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After stirring at rt for 10 min , the reaction mixture was quenched with water, and then was extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane (1:4, v/v) as an eluent to give the 2-(1H-pyrrol-3-yl)aniline (15) (65 mg, 65\%). Yellow oil; IR (ATR) v: $3406 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.5$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (td, $J=7.5$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{td}, J=7.5$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, \mathrm{J}=7.5$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.44-6.46(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.8,129.9,127.2,122.2,121.9,118.6,118.4,116.1$, 115.5, 108.7; HRMS (EI) $m / z:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}, 158.0844$; found, 158.0848.

N-Phenyl-N'-[2-(1H-pyrrol-3-yl)phenyl]urea (16a). A solution of phenyl isocyanate ($62 \mu \mathrm{~L}, 0.57 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise to a solution of aniline 14 ($60 \mathrm{mg}, 0.38 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at rt under N_{2} atmosphere. After stirring at rt for 12 h , the reaction mixture was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane ($3: 7, \mathrm{v} / \mathrm{v}$) as an eluent to give the urea 16a ($57 \mathrm{mg}, 54 \%$). White solid; mp: $160-161^{\circ} \mathrm{C}$; IR (ATR) v: 3325, 3286,1631 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 11.09$ (br s, 1H), 9.17 (s, 1H), 7.81 (dd, $J=7.8$ and
$1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.8$ and $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.14$ (td, $J=7.8$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.27-6.30(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d6) δ 152.9, 140.1, 135.1 129.2, 128.8, 127.9, 125.7, 123.0, 122.4, 121.6, 119.5, 118.7, 117.9, 116.7, 107.9; HRMS (EI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}, 277.1215$; found, 277.1227.

N-Phenyl-N'-[2-(1-(triisopropylsilyl)-1H-pyrrol-3-yl)phenyl]urea (16b). The same procedure as above was carried out using aniline 15 ($300 \mathrm{mg}, 0.96 \mathrm{mmol}$) to give the urea 16b (220 mg, 53\%). White solid; mp: 199-201 ${ }^{\circ} \mathrm{C}$; IR (ATR) v: 3325, $1651 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6) $\delta 8.96$ (br s, 1H), 7.74 (br s, 1H), 7.61 (dd, $J=7.4$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{td}, J=7.4$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{dd}, J=2.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.48$ (sept, J $=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta 153.2,140.1$, 134.5, 129.2, 129.0, 128.7, 125.8, 124.90, 124.85, 124.1, 122.9, 122.6, 121.5, 117.8, 110.6, 17.6, 10.9; HRMS (EI) m/z: [M+] calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{OSi}$, 433.2549; found, 433.2553.

N-Phenyl-N'-[2-(1-triisopropylsilyl-1H-pyrrol-3-yl)phenyl]carbodiimide (17b). A solution of $\mathrm{CBr}_{4}(380 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise to a solution of urea 16b ($100 \mathrm{mg}, 0.23 \mathrm{mmol}$), $\mathrm{PPh}_{3}(303 \mathrm{mg}, 1.2 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.32 \mathrm{~mL}, 2.3$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at rt for 2 h , the reaction mixture was then evaporated in vacuo. The residue was washed with EtOAc/hexane (1:4, v/v) at 3 times and the filtrate was evaporated in vacuo to give the carbodiimide 17 b ($56 \mathrm{mg}, 58 \%$). Yellow oil; IR (ATR) v: $2133 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.70(\mathrm{~m}, 1 \mathrm{H})$, $7.51-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=2.2$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.35$ (m, 2H), 7.11-7.17 (m, 4H), $6.80(\mathrm{dd}, J=2.8$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=2.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{sept}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta 134.1,132.1,130.7,129.4,128.8,128.6,128.5,126.2,125.9,125.7,125.0$, 124.3, 124.0, 123.0, 110.6, 17.8, 11.7; HRMS (EI) $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{Si}$, 415.2444; found, 415.2448 .

N-Phenyl-3H-pyrrolo[2,3-c]quinolin-4-amine (18). A solution of TBAF (1.0 M in THF, $80 \mu \mathrm{~L}, 0.080 \mathrm{mmol})$ was added dropwise to a solution of carbodiimide $17 \mathrm{~b}(28 \mathrm{mg}$, $0.067 \mathrm{mmol})$ in 1,2-dichlorobenzene (2.0 mL) under N_{2} atmosphere. After stirring at 80 ${ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane ($1: 5, \mathrm{v} / \mathrm{v}$) as an eluent to give the pyrroloquinoline 18 (10 mg, 58\%). Yellow oil; IR (ATR) v: $3332 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{dd}, J=7.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=$ 7.8 and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=7.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl3) δ 143.3, 141.2, 140.9, 129.8, 129.4, 126.5, 125.3, 125.1, 123.7, 123.2, 122.7, 121.5, 121.1, 120.1, 102.1; HRMS (EI) $m / z:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3}, 259.1109$; found, 259.1117.

N-Benzyl-N'-[2-(1-triisopropylsilyl-1H-pyrrol-3-yl)phenyl]urea (19a). A solution of benzyl isocyanate ($0.29 \mathrm{~mL}, 2.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a solution of 2-(1 H-pyrrol-3-yl)aniline $14(500 \mathrm{mg}, 1.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt under N_{2} atmosphere. After stirring at rt for 12 h , the reaction mixture was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane (1:4, v / v) as an eluent to give the urea 19a (355 mg, 50%). White solid; mp : $136-138^{\circ} \mathrm{C}$; IR (ATR) v: 3290, $1624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74$ (dd, $J=7.5$ and 1.4 Hz , $1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.5$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{td}$, $J=7.5$ and $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=2.0$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=2.8$ and 2.0 $\mathrm{Hz}, 1 \mathrm{H}), 6.46-6.47(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.45$
(sept, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl3) $\delta 155.8$, 139.0, 134.7, 129.1, 129.6, 128.6, 127.5, 127.3, 126.9, 125.2, 124.5, 123.3, 123.0, 122.7, 110.6, 44.3, 17.8, 11.6; HRMS (EI) $m / z:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{27} \mathrm{H}_{3} 7 \mathrm{~N}_{3} \mathrm{OSi}$, 447.2706; found, 447.2714.

N-(2-Bromophenyl)-N'-[2-(1-triisopropylsilyl-1 H-pyrrol-3-yl)phenyl]urea

The same procedure as above was carried out using aniline 14 ($347 \mathrm{mg}, 1.11 \mathrm{mmol}$) to give the urea 19b (526 mg, 98\%). White solid; mp: 99-100 ${ }^{\circ} \mathrm{C}$; IR (ATR) v: 3294, $1655 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17$ (dd, $J=7.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (dd, J $=7.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=7.8$ and 1.5 $\mathrm{Hz}, 1 \mathrm{H}), 6.97-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{td}, J=7.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=2.8$ and 2.2 $\mathrm{Hz}, 1 \mathrm{H}), 6.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=2.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.45($ sept, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, 1.11 (d, $J=7.5 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.9,136.3,133.7,132.5$, 132.1, 130.1, 129.8 128.2, 127.0, 125.5, 125.3, 124.2, 124.1, 123.1, 122.5, 121.5, 113.5, 110.7, 17.8, 11.6; HRMS (EI) $m / z:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BrN}_{3} \mathrm{OSi}$, 511.1655; found, 511.1665.

N-[3-(2-Bromophenyl)propyl]-N'-[2-(1-triisopropylsilyl-1 H-pyrrol-3-yl)phenyl]

urea (19c). To a solution of 4-(2-bromophenyl)butanoic acid (300 g, 1.2 mmol) in toluene (15 mL) was added diphenylphosphoryl azide ($0.3 \mathrm{~mL}, 1.6 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.25 \mathrm{~mL}, 1.8 \mathrm{mmol}$). After stirring at rt for 30 min , the reaction mixture was evaporated in vacuo to give isocyanate as yellow oil. The isocyanate was used in the next reaction without purification. A solution of isocyanate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added dropwise to a solution of aniline 14 (193 mg, 0.62 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ at rt under N_{2} atmosphere. After stirring at rt for 20 h , the reaction mixture was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane ($1: 4, \mathrm{v} / \mathrm{v}$) as an eluent to give the urea $19 \mathrm{c}(215 \mathrm{mg}, 64 \%)$. White solid; mp: $134-135^{\circ} \mathrm{C}$; IR (ATR)
$v: 3294,1624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{dd}, J=8.0$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.48(\mathrm{dd}, J=8.0$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.0$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.26(\mathrm{~m}, 3 \mathrm{H})$, $7.14(\mathrm{td}, J=8.0$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=2.9$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{dd}, J=2.9$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=2.9$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.64(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dt} J=7.2$ and $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.78$ (quin, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.47 (sept, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,140.8,134.7,132.7,130.3,129.62,129.57,127.6,127.5$, $126.8,125.1,124.7,124.3,123.9,123.0,122.7,110.7,39.7,33.3,30.2,17.8,11.6$; HRMS (EI) m/z: [M+] calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{BrN}_{3} \mathrm{OSi}$, 553.2124; found, 553.2128.

N-[3-(2-Bromophenyl)-3-oxopropyl]-N’-[2-(1-triisopropylsilyl-1 H-pyrrol-3-yl)

phenyl]urea (19d). The same procedure as above was carried out using aniline 14 ($73 \mathrm{mg}, 0.23 \mathrm{mmol}$) and 4-(2-bromophenyl)-4-oxobutanoic acid ($120 \mathrm{mg}, 0.47 \mathrm{mmol}$) to give the urea 19d (62 mg, 98\%). White solid; mp: 121-123 ${ }^{\circ} \mathrm{C}$; IR (ATR) v: 3317, $1705,1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{dd}, J=8.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (dd, $J=8.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=8.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=8.0$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=2.2$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84(\mathrm{dd}, J=2.8$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=2.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $5.15(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dt} J=6.5$ and $6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.47$ (sept, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 203.4, $155.8,140.8,134.9,133.9,131.8,129.7,128.7,128.5,127.5,126.9,125.3,124.3$, 123.0, 122.8, 122.7, 118.7, 110.7, 42.8, 35.2, 17.8, 11.6; HRMS (EI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{Si}$, 567.1917; found, 567.1923.

N-Benzyl-N'-[2-(1-triisopropylsilyl-1H-pyrrol-3-yl)phenyl]carbodiimide (20a). A solution of $\mathrm{CBr}_{4}(148 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise to a solution of urea 19a ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$), $\mathrm{PPh}_{3}(117 \mathrm{mg}, 0.45 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.12$
$\mathrm{mL}, 0.90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at rt for 4 h , the reaction mixture was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane (1:9, v/v) as an eluent to give the carbodiimide 20a ($62 \mathrm{mg}, 64 \%$). Yellow oil; IR (ATR) v: $2137 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.48(\mathrm{~m}, 1 \mathrm{H})$, $7.34-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.03-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{dd}, J=2.8$ and 2.1 $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=2.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 1.47$ (sept, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.12(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.2,136.8,135.8,130.3$, 128.7, 127.6, 127.5, 127.3, 126.0, 125.2, 125.0, 124.1, 123.2, 110.6, 50.4, 17.9, 11.7; HRMS (EI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{Si}, 429.2600$; found, 429.2610.

\boldsymbol{N}-(2-Bromophenyl)- \mathbf{N}^{\prime}-[2-(1-triisopropylsilyl-1 H-pyrrol-3-yl)phenyl]carbodiimide

 (20b). A solution of $\mathrm{CBr}_{4}(119 \mathrm{mg}, 0.361 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added dropwise to a solution of urea $19 \mathrm{~b}(35 \mathrm{mg}, 0.072 \mathrm{mmol}), \mathrm{PPh}_{3}(94 \mathrm{mg}, 0.36 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.1 \mathrm{~mL}, 0.72 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at rt for 2 h , the reaction mixture was evaporated in vacuo to give the crude carbodiimide 20b. The carbodiimide 20b was used in the next reaction without purification, because it was unstable.N -(2-Bromophenyl)-3H-pyrrolo[2,3-c]quinolin-4-amine (22b). A solution of TBAF (1.0 M in THF, $86 \mu \mathrm{~L}, 0.0864 \mathrm{mmol}$) was added dropwise to a solution of the crude carbodiimide 20b in 1,2-dichlorobenzene (3 mL) under N_{2} atmosphere. After stirring at $80^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane ($3: 7, \mathrm{v} / \mathrm{v}$) as an eluent to give the pyrroloquinolin 22b (12 mg, 49\%). Colorless oil; IR (ATR) v: $2962 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6}) 11.99 (br s, 1H), 8.33 (br s, 1H), 8.03-8.13 (m, 2H), 7.70 (d, J=8.0 $\mathrm{Hz}, 1 \mathrm{H}), 7.60-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.03-713(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d6) $\delta 142.9$, 141.6, 138.1, 132.7, 128.4, 127.8, 126.8,
126.3, 126.0, 125.5, 124.9, 122.54, 122.46, 121.3, 119.4, 116.5, 101.6; HRMS (EI) $m / z:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Br}_{3}, 337.0215$; found, 337.0225.

N-[3-(2-Bromophenyl)propyl]-N'-[2-(1-triisopropylsilyl-1 H-pyrrol-3-yl)phenyl]

carbodiimide (20c). A solution of $\mathrm{CBr}_{4}(1.70 \mathrm{~g}, 5.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise to a solution of urea $19 \mathrm{c}(568 \mathrm{mg}, 1.03 \mathrm{mmol}), \mathrm{PPh}_{3}(1.34 \mathrm{~g}, 5.1$ $\mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at rt for 2 h , the reaction mixture was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane ($1: 4, \mathrm{v} / \mathrm{v}$) as an eluent to give the carbodiimide 20c ($411 \mathrm{mg}, 75 \%$). Yellow oil; IR (ATR) v: $2137 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.48-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{dd}, \mathrm{J}=2.0$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.14$ (m, 3H), $6.79(\mathrm{dd}, J=2.7$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=2.7$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{dt} J=6.6$ and $6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.47($ sept, $J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5,136.3,135.7$, $132.9,130.5,130.2,128.7,127.8,127.5,126.0,125.0,124.8,124.4,124.0,123.3$, 110.6, 46.1, 33.4, 31.3, 17.8, 11.7; HRMS (EI) $m / z:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{BrN}_{3} \mathrm{Si}$, 535.2018; found, 535.2012.

N-[3-(2-Bromophenyl)-3-oxopropyl]-N'-[2-(1-triisopropylsilyl-1H-pyrrol-3-yl)

phenyl] carbodiimide (20d). A solution of $\mathrm{CBr}_{4}\left(443 \mathrm{mg}\right.$, mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a solution of urea 19d (152 mg, 0.27 mmol), $\mathrm{PPh}_{3}(351 \mathrm{mg}, 1.34$ $\mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{~mL}, 2.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring at rt for 30 min , the reaction mixture was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane ($1: 9, \mathrm{v} / \mathrm{v}$) as an eluent to give the carbodiimide 20d (99 mg, 68\%). Brown oil; IR (ATR) v: $2133 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.58-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 3 \mathrm{H})$, $7.17-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{dd}, J=2.8$ and $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=$
2.8 and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t} J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.45$ (sept, $J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.4,141.1,136.1$, 135.7, 133.7, 131.8, 130.3, 128.8, 128.7, 127.5, 126.1, 125.3, 125.0, 124.0, 123.2, 118.7, 110.6, 43.8, 41.7, 17.8, 11.7; HRMS (EI) $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{BrN}_{3} \mathrm{OSi}$, 549.1811; found, 549.1823.

N -Benzyl-3H-pyrrolo[2,3-c]quinolin-4-amine (22a). A solution of TBAF (1.0 M in THF, $0.14 \mathrm{~mL}, 0.14 \mathrm{mmol}$) was added dropwise to a solution of carbodiimide 19a (50 $\mathrm{mg}, 0.12 \mathrm{mmol}$) in 1,2-dichlorobenzene (10 mL) under N_{2} atmosphere. After stirring at $80^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane (1:9, v/v) as an eluent to give the pyrroloquinolin 22a ($26 \mathrm{mg}, 90 \%$). Brown solid; mp: 145-146 ${ }^{\circ} \mathrm{C}$; IR (ATR) v: $3329 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (t, J=7.7 Hz, 1H), $7.29(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.19(\mathrm{~m}, 6 \mathrm{H}), 6.86(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.72 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.9,142.3,138.5,128.8,128.5,127.9$, 127.3, 126.3, 125.4, 124.8, 122.7, 122.6, 120.5, 119.1, 102.4, 45.6; HRMS (EI) m / z : [M^{+}] calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3}$, 273.1266; found, 273.1276.

N-[3-(2-bromophenyl)propyl]-3H-pyrrolo[2,3-c]quinolin-4-amine (22c). The same procedure as above was carried out using carbodiimide 19 c ($102 \mathrm{mg}, 0.19 \mathrm{mmol}$) to give the pyrroloquinoline 22c ($45 \mathrm{mg}, 61 \%$). White solid; mp: $158-159^{\circ} \mathrm{C}$; IR (ATR) v: $3309 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 2 H), 1.28 (quin, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.3,142.6,140.5$, $132.5,130.1,128.7,127.5,127.3,126.3,125.1,124.8,124.3,122.8,122.4,120.9$,
119.7, 102.5, 41.1, 33.0, 28.7; HRMS (EI) m/z: [M+] calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrN}_{3}, 379.0684$; found, 379.0692.

4-[1,2,3,4-Tetrahydroquinolin-1-yl)]-3H-pyrrolo[2,3-c]quinoline (23). A mixture of pyrrolo[2,3-c]quinolin 22c ($38 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(1.12 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$, $\mathrm{Cu}(\mathrm{OAc})_{2}(9.1 \mathrm{mg}, 50 \mu \mathrm{~mol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(69 \mathrm{mg}, 0.50 \mathrm{mmol})$ in toluene $(2.0 \mathrm{~mL})$ was refluxed for 3 h under N_{2} atmosphere. The reaction mixture was filtered through Celite pad and the organic layer was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane ($1: 4 \mathrm{v} / \mathrm{v}$) as an eluent to give the tetrahydroquinoline 23 ($10 \mathrm{mg}, 34 \%$). Yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12$ (dd, $J=7.8$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00$ (dd, $J=7.8$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91$ (br s, 1H), 7.54 (td, J $=7.8$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=7.8$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.8$ and 1.6 Hz , $1 \mathrm{H}), 7.14(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{td}, J=8.0$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.75$ (dd, $J=7.8$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.12$ (quin, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.1,142.8,141.2,130.1,129.2$, 129.1, 127.6, 126.3, 126.2, 124.4, 123.9, 122.5, 122.0, 121.9, 121.7, 118.7, 101.6, 47.3, 27.5, 24.1; HRMS (EI) m/z: [M+] calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3}$, 299.1422; found, 299.1432.

5-Methoxy-2-(1-triisopropylsilyl-1H-pyrrol-3-yl)aniline (25). A mixture of 2-iodo-5methoxyaniline (24) (249 mg, 1.1 mmol), 1-(triisopropylsilyl)-1H-pyrrole-3-boronic acid pinacol ester (13) (500 mg, 1.4 mmol$), \mathrm{K}_{3} \mathrm{PO}_{4}(486 \mathrm{mg}, 2.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(13 \mathrm{mg}$, $57 \mu \mathrm{~mol})$, and SPhos ($47 \mathrm{mg}, 114 \mu \mathrm{~mol}$) in $n-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL} / 3 \mathrm{~mL})$ was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 2 h under N_{2} atmosphere. The reaction mixture was quenched with water, and then the mixture was extracted with EtOAc. The EtOAc layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane (1:4 v/v) to give the 2-(pyrrol-3-yl)aniline 25 (227 mg, 66\%). Brown oil; IR (ATR) v: $2943 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.17$
(d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44-6.46(\mathrm{~m}, 1 \mathrm{H}), 6.35-$ $6.40(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.47$ (sept, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,144.6,130.5,124.6,123.4,121.9,115.8,110.7,104.0$, 101.0, 55.1, 17.8, 11.6; HRMS (EI) $m / z:\left[M^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{Si}$, 314.2178; found, 314.2184.

N-[3-(2-Bromophenyl)propyl]-N'-[5-methoxy-2-(1-triisopropylsilyl-1 H-pyrrol-3-

$\mathbf{y l})$ phenyl] urea (27a). To a solution of 4-(2-bromophenyl)butanoic acid ($620 \mathrm{mg}, 2.6$ mmol) in toluene (15 mL) was added diphenylphosporyl azide ($0.70 \mathrm{~mL}, 3.3 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.50 \mathrm{~mL}, 3.4 \mathrm{mmol}$). After stirring at rt for 30 min , the reaction mixture was evaporated in vacuo to give isocyanate as yellow oil. The isocyanate was used in the next reaction without purification. A solution of the isocyanate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (11 mL) dropwise to a solution of aniline $25(438 \mathrm{mg}, 1.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt under N_{2} atmosphere. After stirring at r for 20 h , the reaction mixture was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane (1:4, v / v) as an eluent to give the urea 27a (448 mg, 60%). White solid; $\mathrm{mp}: 117-118{ }^{\circ} \mathrm{C}$; IR (ATR) v: 3298, $1631 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.00-7.06(\mathrm{~m}, 1 \mathrm{H})$, $6.86(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.3$ and $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ (br s, 1H), 6.41 (dd, $J=2.6$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.26$ (m, 2H), $2.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.78 (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) 1.46$ (sept, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), $1.11(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.6,155.7,140.7,136.1$, 132.7, 130.4, 130.3, 127.7, 127.5, 125.1, 124.3, 122.6, 122.4, 120.9, 110.6, 110.3, 107.5, 55.4, 39.8, 33.3, 30.2, 17.8, 11.6; HRMS (EI) m/z: $\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{Si}, 583.2230$; found, 583.2237.

N-[3-(2-lodophenyl)propyl]-N'-[5-methoxy-2-(1-triisopropylsilyl-1 H-pyrrol-3-

$\mathbf{y l})$ phenyl] urea (27b). The same procedure as above was carried out using aniline 25 ($50 \mathrm{mg}, 0.145 \mathrm{mmol}$) and 4-(2-bromophenyl)butanoic acid (105 $\mathrm{mg}, 0.362 \mathrm{mmol}$) to give the urea 27b (66 mg, 70\%). White solid; mp: 124-125 ${ }^{\circ} \mathrm{C}$; IR (ATR) v: 3275, 1624 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{dd}, J=7.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=7.8$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.68$ (dd, $J=8.3$ and $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=2.5$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{t}$, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dt}, J=7.9$ and $5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 1.76 (quin, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) 1.46$ (sept, $J=7.8 \mathrm{~Hz}, 3 \mathrm{H}$), $1.11\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 18 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7,155.7,144.0,139.4,136.1,130.4,129.4,128.4,127.8$, $125.1,122.6,122.4,121.0,110.7,110.3,107.6,100.5,55.4,39.8,38.0,30.6,17.8$, 11.6; HRMS (EI) m/z: $\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{IN}_{3} \mathrm{O}_{2} \mathrm{Si}$, 631.2091 ; found, 631.2097 .

N-[3-(2-Bromophenyl)propyl]-N'-[5-methoxy-2-(1-triisopropylsilyl-1 H-pyrrol-3-

 yl)phenyl] carbodiimide (28a). A solution of $\mathrm{CBr}_{4}(1.53 \mathrm{~g}, 4.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was added dropwise to a solution of urea 27a ($540 \mathrm{mg}, 0.92 \mathrm{mmol}$), $\mathrm{PPh}_{3}(1.21 \mathrm{~g}$, $4.6 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL}, 9.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at rt for 30 min , the reaction mixture was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane (1:4, v/v) as an eluent to give the carbodiimide 28a (387 mg, 74\%). Yellow oil; IR (ATR) v: $2866 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.03-$ $7.08(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=2.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=$ 8.5 and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=2.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{t}, J=7.9 \mathrm{~Hz}$, 2 H), $2.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.94$ (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.46 (sept, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), $1.12(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.9,140.4,137.2,135.2$, $132.8,130.5,129.5,127.7,127.4,124.3,123.8,123.4,123.1,123.0,110.9,110.5$,109.9, 55.3, 45.9, 33.3, 31.2, 17.8, 11.6; HRMS (EI) m/z: [M+] calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{BrN}_{3} \mathrm{OSi}$, 565.2124; found, 565.2128.

N-[3-(2-lodophenyl)propyl]-N'-[5-methoxy-2-(1-triisopropylsilyl-1 H-pyrrol-3-

$\mathbf{y l}$)phenyl] carbodiimide (28b). The same procedure as above was carried out using the urea 27b ($350 \mathrm{mg}, 0.56 \mathrm{mmol}$) to give the carbodiimide $\mathbf{2 8 b}$ ($262 \mathrm{mg}, 77 \%$). Yellow oil; IR (ATR) v: $2133 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80$ (dd, $J=7.8$ and 1.4 Hz , $1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{td}, J=7.8$ and 1.4 $\mathrm{Hz}, 1 \mathrm{H}), 6.78(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.5$ and 2.7 Hz , $1 \mathrm{H}), 6.62(\mathrm{dd}, J=2.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91$ (quin, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) 1.46$ (sept, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.0,143.7,139.6,137.3,135.2,129.63$, $129.58,128.4,127.9,123.9,123.5,123.2,123.0,111.0,110.5,110.0,100.4,55.4$, 46.0, 37.9, 31.6, 17.9, 11.7; HRMS (EI) m/z: $\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{IN}_{3} \mathrm{OSi}, 613.1985$; found, 613.1990.

N-[3-(2-Bromophenyl)propyl]-7-methoxy-3H-pyrrolo[2,3-c]quinolin-4-amine

(30a). A solution of TBAF (1.0 M in THF, $0.6 \mathrm{~mL}, 0.60 \mathrm{mmol}$) was added dropwise to a solution of carbodiimide 28a ($281 \mathrm{mg}, 0.50 \mathrm{mmol}$) in 1,2-dichlorobenzene (25 mL) under N_{2} atmosphere. After stirring at $80^{\circ} \mathrm{C}$ for 30 min , the reaction mixture evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane (3:2, v/v) as an eluent to give the pyrroloquinoline-4-amine 30a (138 mg, 68\%). Yellow oil; IR (ATR) v: $3309 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ (dd, $J=8.0$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.29(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14$ (td, $J=7.6$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=8.5$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ (quin, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5,147.6,143.4,140.4,132.5$,
$130.0,129.0,127.4,127.2,125.4,124.3,123.9,118.6,114.9,112.2,106.3,101.9$, 55.3, 41.2, 33.0, 28.6; HRMS (EI) m/z: [$\left.\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}, 409.0790$; found, 409.0791.
N-[3-(2-lodophenyl)propyl]-7-methoxy-3H-pyrrolo[2,3-c]quinolin-4-amine (30b). The same procedure as above was carried out using the carbodiimide $\mathbf{2 8 b}(40 \mathrm{mg}$, 0.065 mmol) to give the pyrroloquinoline-4-amine 30b ($24 \mathrm{mg}, 82 \%$). Yellow oil; IR (ATR) v: $3313 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{dd}, J=8.7$ and $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.32$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.36 (quin, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.5$, $147.4,143.83,143.76,139.3,129.3,129.0,128.2,127.7,125.1,123.8,118.7,115.0$, 112.4, 106.6, 102.1, 100.6, 55.3, 41.2, 37.9, 29.3; HRMS (EI) m/z: [M ${ }^{+}$] calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{IN}_{3} \mathrm{O}, 457.0651$; found, 457.0653.

7-Methoxy-4-(1,2,3,4-tetrahydroquinolin-1-yl)-3H-pyrrolo[2,3-c]quinoline (31). A mixture of pyrroloquinoline-4-amine $30 \mathrm{a}(147 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc}))_{2}(4.0 \mathrm{mg}, 0.018$ $\mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc}) 2(33 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(248 \mathrm{mg}, 1.8 \mathrm{mmol})$ in toluene $(7 \mathrm{~mL})$ was refluxed for 23 h under N_{2} atmosphere. The reaction mixture was filtered through Celite pad and the organic layer was evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane (1:4 v/v) as an eluent to give the tetrahydroquinoline 31 ($30 \mathrm{mg}, 25 \%$). Yellow solid; mp: 159-160 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=7.8$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=7.2$ and $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.8$ and $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.11$
(sept, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl3) $\delta 158.5,145.4,144.2,141.2,130.5$, 129.2, 129.0, 126.3 124.7, 123.5, 121.6, 121.1, 118.7, 116.1, 115.3, 107.6, 101.1, 55.4, 47.3, 27.5, 24.0; HRMS (EI) $m / z:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}$, 329.1528; found, 329.1533.

Synthesis of 31 from 30b. The same procedure as above was carried out using the pyrroloquinoline-4-amine 30b ($90 \mathrm{mg}, 0.196 \mathrm{mmol}$) to give the tetrahydroquinoline 31 ($47 \mathrm{mg}, 73 \%$).

Trigonoine B(1). To a solution of tetrahydroquinoline $31(27 \mathrm{mg}, 0.082 \mathrm{mmol})$ in acetone (0.5 mL) at $0{ }^{\circ} \mathrm{C}$ was added anhydrous $\mathrm{MgSO}_{4}(25 \mathrm{~g}, 0.21 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}$ (0.2 mL). Subsequently, $\mathrm{KMnO}_{4}(54 \mathrm{mg}, 0.45 \mathrm{mmol})$ was added in small portions over 30 min. After stirring at it for 36 h , the reaction mixture was quenched with a saturated solution of $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$. The reaction mixture was filtered through Celite pad, and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. The residue was purified by column chromatography using EtOAc-hexane (1:5, v/v) to give trigonoine B (1) (12 mg, 43%). Yellow solid; mp: 277-278 ${ }^{\circ} \mathrm{C}$; IR (ATR) v: $1674 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 11.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=7.8$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.8$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=$ 8.8 and $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=2.9$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d6) $\delta 193.5,157.8,149.2,144.5,143.5,134.7,134.7,130.5$, 128.0, 127.2, 124.1, 122.7, 121.0, 119.4, 117.1, 116.3, 116.2, 108.1, 101.0, 55.2, 48.3; HRMS (EI) $m / z:\left[\mathrm{M}^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$, 343.1321; found, 343.1327.

Supporting Information

Supporting Information File 1: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds. [https://www.beilstein-journals.org/bjoc/content/supplementary/ \qquad .]

ORCID® iDs

Tominari Choshi - https://orcid.org/0000-0003-0233-8593

References

1. Li, S.-F.; Di, Y.-T.; He, H.-P.; Zhang, Y.; Wang, Y.-H.; Yin, J.-L.; Tan, C.-J.; Li, S.-L.; Hao, X.-J. Tetrahedron Lett., 2011, 52, 3186-3188.
2. Carroll, A. J.; Duffy, S.; Avery, V. M. J. Org. Chem., 2010, 75, 8291-8294.
3. (a) Sangoi, Y.; Sakuleko, O.; Yuenyongsawad, S.; Kanjana-opas, A.; Ingkaninan, K.; Plubrukan, A. Mar. Drugs, 2008, 6, 578-586. (b) Okanya, P. W.; Mohr, K. I.; Gerth, K.; Jansen, R.; Muller, R. J. Nat. Prod., 2011, 74, 603-608.

4 (a) Ni, L.; Li, Z.; Wu, F.; Xu, J.; Wu, X.; Kong, L.; Yao, H. Tetrahedron Lett., 2012, 53, 1271-1274. (b) Schwalm, C. S.; Correia, C. R. D. Tetrahedron Lett., 2012, 53, 4836-4840. (c) Ma, X.; Vo, Y.; Banwell, M. G.; Willis, A. C. Asian J. Org. Chem., 2012, 1, 160-165. (d) Lindsay, A. C.; Sperry, J. Synlett, 2013, 461-464. (e) Aguiar, A. C. C.; Panciera, M.; Simao dos Santos, E. F.; Singh, M. K.; Garcia, M. L.; de Souza, G. E.; Nakabashi, M.; Costa, J. L.; Garcia, C. R. S.; Oliva, G.; Correia, C. R. D.; Guido, R. V. C. J. Med. Chem., 2018, 61, 5547-5568.
5. (a) Mahajan, J. P.; Suryawanshi, Y. R.; Mhaske, S. B. Org. Lett., 2012, 14, 58045807. (b) Yamaoka, Y.; Yoshida, T.; Shinozaki, M.; Yamada, K.; Takasu, K. J. Org. Chem., 2015, 80, 957-964. (c) Bolte, B.; Bryan, C. S.; Sharp, P. P.; Sayyahi, S.;

Rihouey, C.; Kendrick, A.; Lan, P.; Banwell, M. G.; Jackson, C. J.; Fraser, N. J.; Willis, A. C.; Ward, J. S. J. Org. Chem., 2020, 85, 650-653.
6. Panarese, J. D.; Lindsley, C. W. Org. Lett., 2012, 14, 5808-5810.
7. (a) Choshi, T.; Hibino, S. Heterocycles, 2011, 83, 1205-1239. (b) Hibino, S. Yakugaku Zasshi, 2016, 136, 607-648, and related references cited.
8. (a) Furukawa, Y.; Sawamoto, A.; Yamaoka, M.; Nakaya, M.; Hieda, Y.; Choshi, T.; Hatae, N.; Okuyama, S.; Nakajima, M.; Hibino, S. Molecules, 2019, 24, 1366-1376. (b) Itoh, T.; Hatae, N.; Nishiyama, T.; Choshi, T.; Hibino, S.; Yoshimura, T.; Ishikura, M. Med. Chem. Res., 2018, 27, 412. (c) Nishiyama, T.; Hatae, N.; Mizutani, M.; Yoshimura, T.; Kitamura, T.; Miyano, M.; Fujii, M.; Satsuki, N.; Ishikura, M.; Hibino, S.; Choshi, T. Eur. J. Med. Chem., 2017, 136, 1-13.
9. Hayashi, K.; Choshi, T.; Chikaraishi, K.; Oda, A.; Yoshinaga, R.; Hatae, N.; Ishikura, M.; Hibino, S. Tetrahedron, 2012, 68, 4274-4279.
10. Nishiyama, T.; Hatae, N.; Chikaraishi, K.; Uchida, K.; Yokoyama, C.; Hibino, S.; Choshi, T. Heterocycles, 2019, 99, 415-424.
11. (a) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S. J. Org. Chem., 1995, 60, 5899-5904. (b) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S. Synlett, 1995, 147-148.
12. Choshi, T.; Tonari, A.; Yoshioka, H.; Harada, K.; Sugino, E.; Hibino, S. J. Org. Chem., 1993, 58, 7952-7954.
13. Yoshioka, H.; Matsuya, Y.; Choshi, T.; Sugino, E.; Hibino, S. Chem. Pharm. Bull., 1996, 44, 709-714.
14. Nishiyama, T.; Murakami, M.; Taninaka, K.; Hamada, E.; Endo, M.; Kinou, D.; Hatae, N.; Choshi, T. Heterocycles, 2021 inpress.
15. Tsukano, C.; Nakajima, M.; Hande, S. M.; Takemoto, Y. Org. Biomol. Chem., 2019, 17, 1731-1735.
16. Molina, P.; Fresneda, P. M.; Alarcón, P. Tetrahedron Lett., 1988, 29, 379-380.
17. Hibino, S.; Sugino, E.; Kuwada, T.; Ogura, N.; Shintani, Y.; Satoh, K. Chem. Pharm. Bull., 1991, 39, 79-80.
18. Morrison, M. D.; Hanthorn, J. J; Pratt, D. A. Org. Lett., 2009, 11, 1051-1054.
19. Harada, R.; Nishida, N.; Uchiito, S.; Onozaki, Y.; Kurono, N.; Senboku, H.; Masao, T.; Ohkuma, T.; Orito, K. Eur. J. Org. Chem., 2012, 366-379.
20. Wetzel, A.; Gagosz, F. Angew. Chem. Int. Ed., 2011, 50, 7354-7358.
21. (a) Nakanishi, M.; Bolm, C. Adv. Synth. Catal., 2007, 349, 861-864. (b) Bonvin, Y.; Callens, E.; Larrosa, I.; Henderson, D. A.; Oldham, J.; Burton, A. J.; Barrett, A. G. M. Org. Lett., 2005, 7, 4549-4552. (c) Wu, S.; Liu, C.; Luo, G.; Jin, Z.; Zheng, P.; Chi, Y. R. Angew. Chem. Int. Ed., 2019, 58, 1-5.
22. Silva, S. B. L.; Della Torre, A.; Ernesto de Carvalho, J.; Ruiz, A. L. T. G.; Silva, L. F., Jr. Molecules, 2015, 20, 1475-1494.

