
License and Terms: This document is copyright 2021 the Author(s); licensee Beilstein-Institut.

This is an open access work under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0). Please note that the reuse,
redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

The license is subject to the Beilstein Archives terms and conditions: https://www.beilstein-archives.org/xiv/terms.
The definitive version of this work can be found at https://doi.org/10.3762/bxiv.2021.3.v1

This open access document is posted as a preprint in the Beilstein Archives at https://doi.org/10.3762/bxiv.2021.3.v1 and is
considered to be an early communication for feedback before peer review. Before citing this document, please check if a final,
peer-reviewed version has been published.

This document is not formatted, has not undergone copyediting or typesetting, and may contain errors, unsubstantiated scientific
claims or preliminary data.

Preprint Title Influence of Beam Energy of Ions on Properties of Nickel Nanowires

Authors Shehla Honey, Jamil Asim, Adnan Shahid Khan, Aisida O. Samson,
Ishaq Ahmad, Kaviyarasu Kasinathan, Maaza Malik and Tingkai
Zhao

Publication Date 19 Jan. 2021

Article Type Full Research Paper

ORCID® iDs Shehla Honey - https://orcid.org/0000-0002-3474-7458; Aisida O.
Samson - https://orcid.org/0000-0003-1301-2302

https://creativecommons.org/licenses/by/4.0
https://www.beilstein-archives.org/xiv/terms
https://doi.org/10.3762/bxiv.2021.3.v1
https://orcid.org/0000-0002-3474-7458
https://orcid.org/0000-0003-1301-2302


1 

Influence of Beam Energy of Ions on Properties of Nickel 

Nanowires 

 
Shehla Honey a, f, g, h, 1, Jamil Asim b, c, Adnan Shahid Khan c, Aisida O Samson d, e, Ishaq 

Ahmad d, h, Kaviyarasu Kasinathan f, g, Maaza Malik f,  g, Tingkai Zhao h, i 
 

aCentre for Nanosciences, University of Okara, Okara, Pakistan 

bUniversity of Okara, Okara Pakistan 

cFaculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Malaysia 

dNational Center for Physics, Quaid-i-Azam University, Islamabad 44000, Pakistan 

eDepartment of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria 

fUNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of 

South Africa, Muckleneuk ridge, P O Box 392, Pretoria, South Africa, 

gNanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation, Old 

Faure road, P O Box, 722, Somerset West 7129, South Africa. 

hNPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, 

Northwestern Polytechnical University, Xi'an 710072, China 

iSchool of Materials Science & Engineering, Northwestern Polytechnical University, Xi'an 710072, China 

 

Abstract 

Electrical conductivity and optical transmittance of Nickel Nanowires (Ni-NWs) networks was 

reported in this work. The Ni-NWs was irradiated with 3.5 MeV, 3.8 MeV and 4.11 MeV proton (H+) 

ions at room temperature. The electrical conductivity of Ni-NWs networks was observed to increase 

with the increase in beam energies of H+ ions.  With the increase in ions beam energies, electrical 

conductivity increases and this may be attributed to a reduction in wire-wire point contact resistance 

due to the irradiation-induced welding of NWs. Welding is probably initiated due to H+ ions-

irradiation induced heating effect that also improved the crystalline quality of nanowires (NWs). After 

ion beam irradiation, localize heat is generated in nanowires due to ionization which was also verified 

by SRIM simulation. Optical transmittance is increased with increase in energy of H+ ions. The Ni-

NWs networks subjected to an ion beam irradiation to observe corresponding changes in electrical 

conductivity and optical transparencies are promising for various nano-technological applications as 

highly transparent and conducting electrodes. 
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For streaming of charge carriers in many new technologies, strongly conductive networks of metal 

nanowires (MNWs) are required for the flow of charge carriers in many new nano-technological applications 

[1]. In 2008, it was found by P. Peumans et al. [2] that MNWs mesh based transparent electrodes appeared to be 

most important contenders in the industry of transparent conducting electrodes. Revenue from MNWs based 

transparent electrodes will go beyond $255 million according to estimation of nano-market. A good percolation 

path is offered by MNWs networks to the flow of charge carriers which is accredited to intrinsic metallic nature 

of MNWs. In MNWs networks, nanowire-nanowire junction point is the main resistance point which needs to 

be welded [3]. For NW-NW junction welding, several techniques have been introduced by several researchers 

such as: cold welding [4], pulse laser processing [5], Joule heat welding [6, 2, and 7]. Besides, welding obtained 

by exposing nanomaterials to energetic ions is an important approach for fabrication of nanowire-nanowire 

junction through welding. This technique is applicable to variety of other nanomaterials [8-14]. Outburst of 

structure of nanomaterials as a result of exposure of nanomaterials to energetic ions is a general misconception 

but the other positive aspect is to tailor the electronic, structural, optical and magnetic properties of 

nanomaterials through ion beam irradiation [8, 9, 11, 15 and 16]. In one of previous report, Bari et al reported 

the increase in electrical conductivity of Ag-NWs networks through ion beam irradiation technology. Similarly, 

in another report, we found increase in electrical conductivity of Ag-NWs [14] networks by MeV H+ ions. After 

successful modification of electrical conductivities of Ag-NWs through ion beam irradiation technique, we tried 

to implement this technique to modify conductivity of various types of metallic NWs. 

In this report, we prepared the drop casted networks of Ni-NWs and irradiated these samples with beams of 

energies 3.5 MeV, 3.8 MeV and 4.11 MeV H+ ions. To the best of our knowledge, this is first time we reported 

the influence of beams of H+ ions of various energies on the properties of Ni-NWs. Drop casting is found to be 

an economical and simple approach to provide randomly distributed NWs networks on glass substrate which 

then can be followed with ion beam irradiation for welding at contact points and modification in electrical and 

optical properties. 

 

2. Experimental Section 

For present study, Nickel Nanowires were purchased from PlasmaChem (GmbH) (Product ID: PL-

NiW200). The diameters of pristine NWs were in the range ≈ 300-500nm and having lengths ≈ 100-200 μm. 

Initially, it was obtained in form of wool-like fibre which was later converted to an aqueous solution. To prepare 

the solution, we used 5mg of Ni-NWs fiber in 1mL of ethanol. The finally prepared solution of Ni-NWs was 

deposited on a glass substrate using drop casting method. The schematic representation of transferring solution 

to a glass substrate can be seen in Figure 1 (a-b).  
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Figure 1: Experimental scheme of drop casting of solution on glass substrate. 

 

The samples were thereafter exposed to energetic beams of H+ ions of fluence 1x1016 ions/cm2 and having 

energies i.e., 3.5 MeV, 3.8 MeV, 4.1 MeV and 4.4 MeV at room temperature (RT) using a 5 UDH-Pelletron 

accelerator at ̴ 10-7 Pa. The Stopping Range of Ions in Matter (SRIM) simulation was carried out to obtain 

information about implantation of H+ ions into Ni-NWs during irradiation and generation of localize heating 

effect in NWs. The structural and morphological information of Ni-NWs was obtained using transmission 

electron microscopy (TEM) and X-ray diffraction (XRD) techniques. Electrical conductivity and optical 

measurements were conducted using four-point probe techniques and UV-VIS Spectroscopy respectively. The 

voltage potential “V” in the probe is measured using the expression in equation 1 [14]. 

   𝑉 = 1
2𝜋𝑆𝑖𝐺⁄       (1) 

 

Where G is “surface conductivity” and Si is “distance between current and voltage probes” and I is “current”.  

3. Results and Discussions 

The pristine Ni-NWs deposited via drop casting technique on glass substrate are shown in Transmission 

Electron Microscopic images of Figure 2 (a-c). It is shown from these networks that NWs are self-assembled by 

Vander Waals forces with NWs density well above the percolation threshold. The diameters of pristine Ni-NWs 

ranges between 300-500nm (see Figure 2 (a)). These Ni-NWs have polycrystalline in nature and it is verified 

from HRTEM image of Figure 2(b) which is further confirmed through SAED image of Figure 2 (c). An EDX 

spectrum of un-irradiated Ni-NWs is shown in Figure 2 (d). It shows trace elements of Ni and Cu. It is seen in 

Figure 2 (d) that main trace element is Ni and Cu is also appeared which might be due to copper grids that 

employed during TEM analysis of un-irradiated sample. For TEM analysis, solution of Ni-NWs was deposited 

on copper grids. After irradiation of Ni-NWs with beam energy 3.5 MeV with beam fluence 1x1016ions/cm2, 

joining of NWs was observed as shown in Figure 2 (e). It is seen from TEM results that morphology of NWs is 

also preserved after irradiating Ni-NWs with beam of H+ ions of energy ̴ 3.5 MeV. 
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Figure 2: (a) Un-irradiated Ni-NWs (b) HRTEM of Ni-NWs (c) SAED image of un-irradiated Ni-NWs 

(d) EDX spectra (e) Ni-NWs network irradiated by H+ ions (3.5 MeV) at fluence 1x1016 ions/cm2 (f) HRTEM 

image showing clear preview of interconnection or welding occurred between Ni-NWs after irradiation by H+ 

ions of energy 3.5 MeV and fluence 1x1016 ions/cm2. 

 

 The Ni-NWs are found to be welded or interconnected joined with each other after irradiating by ions of 

energy 3.5 MeV and beam fluence ~1x1016 ions/cm2 as seen in Figure 2 (e). The reason for welding or joining of 

these Ni NWs is due to ion irradiation-induced localized heat. The formation of junctions of Ni-NWs in various 

shapes such as cross and parallel shapes can be clearly seen in Figure 2(e) due to H+ ion irradiation-induced 

joining that might lead to form welded network of Ni-NWs. Furthermore, it can also be seen in TEM image of 

Figure 2 (e) that morphology of NWs is still preserved. The clear preview of welded NWs of Figure 2 (e) can be 

seen in Figure 2 (f). 
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Figure 3: Ni-NWs network irradiated by 3.8 MeV H+ ions at fluence 1x1016 ions/cm2 

 

 

Figure 4: Ni-NWs network irradiated by 4.11 MeV H+ ions at fluence1x1016 ions/cm2 

 With the increase of beam energy up to 3.8 MeV at beam fluence ~1 x 1016 ions/cm2, welding of NWs is 

seen with stable morphology. The TEM images of the junctions that have been welded due to ion beam 

irradiation are presented in Figure 3 (a). Also, the corresponding HRTEM image of welded junctions is 

presented in Figure 3 (b). It is clear from Figure 3 that the morphology of Ni-NWs is still preserved at high 

energy. It is also seen in Figure 3 that NWs are perfectly welded to each other. With further increase in beam 

energy up to 4.11 MeV, welding is found between NWs with stable morphology as shown in TEM image of 

Figure 4. Figure 4 shows NWs are well-connected to each other in various shapes. However, it is found in case 

of high energy ions that some NWs are melted, fused or merged with each other. It is found from TEM results 

that welding between NWs is occurred at all beam energies and morphology of Ni-NWs is preserved at all 

energies.  

 Theoretical concept behind welding between nickel nanowires is explained by thermal spike model. For 

faster beam of proton ions (≥ 0.11 MeV), kinetic energy of the energetic ions is usually transferred to target 

electrons which would produce electronic energy losses (Se) due to ionization more dominantly. Therefore, Se 

may perhaps play an imperative role in the atomic transport process at the contact positions of individual Ni-

NWs in case of high energy ions [17]. When beam of proton ions hits an individual Ni nanowire, ions might 
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tend to lose a small fraction of their kinetic energy by columbic interaction with atomic electrons [18]. 

According to thermal spike’s model, these excited electrons will remain in thermo dynamical equilibrium for the 

time interval of 10-15 s through electron–electron interactions and thereafter excited electrons discharge their 

energy to atoms in Ni lattice by electron–phonon coupling in time interval ̴10-13–10-10 s. This energy is then 

deposited in form of heat to the Ni lattice along ions track and consequently produce localize spikes of heat or 

thermal spikes. It depends on potency of electron–phonon coupling that temperature along the ion’s path may 

significantly enhanced up to melting point of the Ni material and a molten zone or a liquid cylinder of a few nm 

in depth is created at interface of crossing regions between two Ni nanowires [17]. This molten zone at 

intersecting positions is transitory and is formed up to several thousands of degree Kelvin which would result in 

atomic displacements and mass transport of two Ni-NWs into each other exactly on crossing positions. In a 

picoseconds time duration, proton or ion’s tracks turn cool down and results in welding of Ni-NWs on crossing 

positions. With increasing in incident energy of ions beam, the localized heating effect of material also increases 

and results in the mass transport of Ni-NW’s atoms into each other at contact position more efficiently. So, these 

MeV proton induced thermal spikes are localized in nature and increase with increasing incident beam energy 

cause to effectively weld Ni-NWs with each other [19]. Surplus or high ions beam energies and fluencies were 

avoided due to keep safe from damaging effect in NWs due to excessive power of ions. Similarly, in case of low 

beam fluencies, less heat is generated. This heat is insufficient to effectively weld NWs on overlapping 

positions. Therefore, medium dose and ions beam energies were selected to achieve optimized results [20].  

After examining the Ni-NWs networks by TEM, the structural evaluation of Ni-NWs network before 

and after irradiation with 3.5 MeV, 3.8 MeV, 4.11 MeV H+ ions was also carried out. Structural evaluation was 

made to observe changes in crystalline structure of NWs.  

 

Figure 5: XRD spectra analysis of Ni-NWs network irradiated with 3.5, 3.8, 4.11 MeV of H+ ions at 1x1016 

ions/cm2. 

 

Structural information on H+ ions irradiated Ni-NWs networks would also be supportive for examining 

the changes in conductivity of the material. In order to verify the structure of the pristine and the irradiated Ni-

NWs networks, the XRD measurements were conducted at room temperature (RT) and presented in Fig. 5. Un-
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irradiated sample is showing peaks of face centered cubic (fcc) structure of Ni-NWs [13]. After irradiation, 

shifting in the value of 2θ of the diffraction peaks is not observed in the XRD spectra when compared with the 

un-irradiated samples. We also observed that the peak intensities are increased with the increase in ion beam 

energies, as seen in Fig. 5. The increase in intensity of XRD peaks is might be due to improvement in crystalline 

quality of NWs after irradiation [9, 14, 21].   

After the TEM and XRD analysis of Ni-NWs, four probe methods was employed to determined the 

conductivity of samples before and after irradiation. The electrical conductivity was observed to increase at 

beam 3.5 MeV with respect to un-irradiated samples; which is further increased with increase in beam energy. 

This increment might be owing to local heating of Ni-NWs by the ion beam irradiation which improved the 

crystalline quality of NWs which lead to increase conductivity of NWs slightly [10].  

The relative conductivity of un-irradiated samples is 1 which is increased to 2.74 at beam energy 3.5 

MeV. The observed increase of relative conductivity after irradiation is similar to carbon nanotubes (C-NTs) 

and silver nanowires (Ag-NWs) networks already demonstrated in our previous report [14, 22]. As beam energy 

is increased to 3.8 MeV, Ni-NWs network becomes highly conductive. Fused, welded junctions between Ni-

NWs at irradiation fluence 3.8 MeV were presented in TEM images of Fig. 2 (b). At this beam fluence, the 

electrical conductivity of Ni-NWs mesh was recorded and observed to increase by 3.98 times referred to un-

irradiated sample. The increase in the value of electrical conductivity might be due to welding of NWs at 

junction positions which caused a decrease in resistance at contact points; hence a resistance free path is 

provided to electrons at junction locations. At high beam energy i.e., 4.11 MeV some NWs are fused and 

merged to each other which gives more rise to conductivity. TEM image of Fig. 4 is presenting this mutilation 

where these NWs were found to be melted and merged with each other. Variations of electrical conductivity in 

Ni-NWs are analyzed with irradiation energy of H+ ions, a plot of relative conductivity versus irradiation energy 

is presented in Figure 6. 

 

 

 

Figure 6: Electrical conductivity (relative i.e., G/Go) of Ni-NWs meshes as a function of energy of H+ ions. 

 

G is conductivity of irradiated sample and Go is the conductivity of un-irradiated sample whereas G/G0 

is relative conductivity of samples. The obtained results are similar to Ag-NWs at different fluencies of Li3+ ions 
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[14, 20]. A rise in conductivity value was clearly seen in Figure 6 which reaches a maximum value at beam 

energy 4.11 MeV as shown in Figure 6. The observed increase in conductivity might be due to reduction of 

defects caused as results of local heating induced fusion or coalescence of NWs. 

 The analysis improvement in value of conductivities of Ni-NWs after irradiation with H+ ions of different 

energies have also been examined by Stopping and Range of Ions in Matter (SRIM) simulation program. The 

SRIM simulation program was run for parameters i. Incidet ions was 10000 ii. Incident angle was 0o iii. Layer 

thickness was 2000 Ao. The plots of ions tracks in the materials at various energies and collision events have 

been demonstrated in Figure 7 (a-f). In Fig. 7 (a-c), red colored dots are representing vacancies induced due to 

impact of 3.5 MeV, 3.8MeV and 4.11 MeV H+ ions with a lattice of Ni layer respectively whereas Figure 7 (d-e) 

shows the collision events. 

 

 

Figure 7: SRIM simulation results. Path of H+ ions on Y-axis (a) 3.5 MeV ions (b) 3.8 MeV ions (c) 4.11 MeV 

ions (d-f) Collision impacts in Ni layer. 

 

The simulation results of impact of H+ ions with Ni layer are shown in Table 1. Simulations were 

carried out to obtain information about loss of energy of H+ ions in the materials. Total damage was found using 

Kinchin-Pease method and recoils after impact of 3.5 MeV, 3.8 MeV and 4.11 MeV H+ ions with materials. 

Incident angle was selected to be 0o. The term ionization gives us information about loss of energy of H+ ions to 

target electrons. From Simulation results, it is found that no H+ ions is diffused or implanted in Ni layer. The 

localize heat is produced in form of ionization in Ni layer which improves the crystalline quality of material and 

cause to increase the conductivity of Ni NWs. Simulation results are showing that no defects are produced in 

lattice due to diffusion of H+ ions into Ni layer. Moreover, it is shown from Table 1 that ionization rate due to 
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ions is increased to 99.93 from 99.90 as the energy is increased to 4.11 MeV from 3.5 MeV. Loss of energy of 

ions in producing phonons is 0.02 which is too small and constant at all energies. Therefore, it is seen from 

SRIM results that major part of ion’s energy is contributing to production of heat due to ionization. The 

production of recoils is very small in the materials, however, recoils also contributing their energies in form of 

ionization and phonons. XRD and simulation results collectively represents the improvement in crystallinity of 

NWs due to ionization induced localized heat and production of lattice defects are too small within NWs after 

exposure to H+ ions. However, induction of localize heat is dominant process as compared to creation of defects 

and it is verified from SRIM results. 

 

Table 1: Simulation of H+ ions interacting with Ni layer. 

 

Energy of 

Ions (MeV) 

Number of 

incident 

ions 

Total 

Number of 

Vacancies/Ion 

No of 

Transmitt

ed ions 

% of Energy Loss 

(Ion) 

% of Energy Loss 

(Recoil) 

Ionization Phonons Ionization Phonons 

3.5 10000 0.1 10000 99.90 0.02 0.02 0.06 

3.8 10000 0.1 10000 99.92 0.02 0.01 0.05 

4.11  10000 0.0 10000 99.93 0.02 0.01 0.04 

 

After initiation of coalescence or fusion of NWs, contact resistance of NWs is reduced, path length is 

increased and consequently conductivity is increased. XRD and simulation results collectively represents that 

both phenomena such as coalescence of NWs due to heat and production of lattice defects are occurring 

concurrently within NWs after exposure to H+ ions. However, induction of localize heat is dominant process as 

compared to creation of defects. If the beam fluence is low, coalescence process of NWs is dominant and 

increased path length; consequently, conductivity is increased. In case of high irradiation fluence 1x1016 

ions/cm2, both localize heating effect and generations of defects are appearing in the structure concurrently. 

Besides, less path length is occurred after exposure of NWs to high fluencies of H+ ions which is due to cutting 

and slicing of NWs; consequently, reduces conductivity. On the basis of present experimental findings and 

previous experiments, it is found that changes of electrical conductivity of Ni-NWs have been occurred which 

could be tuned for numerous nanotechnology applications. 
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Figure 8: Transmittance spectra of random network of Ni-NWs (a) un-irradiated (b) 3.5 MeV ions (c) 3.8 MeV 

ions (d) 4.11 MeV ions 

 The optical properties of Ni-NWs networks are different as compared to bulk nickel and originated due 

to surface plasmonic resonance effect. Figure 8 (a-d) represents optical transmittance spectra of Ni-NWs 

networks. in the transmittance spectra of Figure 8 (a-d), strong absorption band is seen at around 375 nm which 

lies in ultraviolet region [23, 24, 25]. The absorption band appears at 375 nm which is in ultraviolet region due 

to surface plasmonic resonance effect which is missing in bulk nickel [25]. This absorption band might become 

visible due to an interaction of conduction band electrons with an electromagnetic field.  

 When electromagnetic field interacts with Ni-NWs network, oscillating electric field will be 

induced and this oscillating electric field perturbs conduction band electrons at the surface. Consequently, 

electron cloud is displaced with respect to nuclei of material. Later, the electron cloud oscillates are produced 

relative to the nuclei due to columbic force of attraction between electrons and material nuclei [25]. Collective 

effects of oscillations of conduction band electrons at the surface are called surface plasmonic resonance [25]. 

This resonance effect is might be the reason for reducing transmittance, enhanced scattering and absorption of 

light in UV region. In case of metal nanowires, these surface plasmonic bands lead to highly tunable and 

controllable properties which can be exploited in various nanotechnology applications.  Moreover, it can be seen 

from Fig. 8 that transmittance of presented networks increased with increase in beam energy of proton ions 

which might be due to improvement of crystallinity of Ni-NWs occurred due to localized heating effect induced 

by ionization.  

4. Conclusion 

Welding of NWs is obtained by exposure to beams of energetic H+ ions of various energies. Welding 

between NWs will cause to reduce the wire-wire junction resistance and due to and improve the electrical 

conductivity of NWs. The electrical conductivity of NWs is increased with the increase in beam energy of 

energetic ions. This increase is might be due to improvement in crystallinity of NWs with ion beam irradiation. 

Similarly, the optical transmittance is also increased with increase in beam fluence of H+ ions which is might be 

due to improvement in crystallinity of material. SRIM simulation shows that ionization rate is increasing with 
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the increase in beam energy of H+ ions which is indication that localize heat is producing in the NWs and 

increasing with the increase in beam energy of ions. The present approach is superb for fabrication of highly 

conductive NWs networks. This study is useful in many current nanotechnology applications where high 

electrical conductivity and optical transmittance are required. 
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