Supporting Information

First series of \boldsymbol{N}-alkylamino peptoid homooligomers: Solution phase synthesis and conformational investigation

Maxime Pypec, Laurent Jouffret, Claude Taillefumier*キ, and Olivier Roy ${ }^{\ddagger}$
Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France
Table of contents

1. General Methods S2
2. Synthesis of peptoid oligomers 1-6 S2
a) Submonomer synthesis of peptoids 1-5 S2
b) General procedures S3
c) Segment-coupling reactions S6
3. X-ray crystallographic data for peptoid 2 S8
4. Analytical HPLC chromatograms of peptoids 1-6 and monomer A S14
5. NMR spectra S17
6. Variable concentration study S40
7. Infra-red spectra S41
8. Computation S43
a) Geometry optimization of monomer model Ac- $\mathrm{NNMe}-\mathrm{NMe}_{2}$ S43
b) Geometry optimization of dimer model Ac- $(N \mathrm{NMe})_{2}-\mathrm{NMe}_{2}$ S45
c) Geometry optimization of hexamer model $\mathrm{Ac}-(\mathrm{NNMe})_{6}-\mathrm{NMe}_{2}$ S45
9. Transmission Electron Microscopy (TEM) S45

1. General Methods

Anhydrous THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMF (amine free) were obtained from commercial sources and were used as received. All other solvents and chemicals obtained from commercial sources were used as received. NMR spectra were recorded on a 400 MHz Bruker Avance III HD spectrometer or a 500 MHz Bruker AC-500 spectrometer. Chemical shifts are referenced to the residual solvent peak, and J values are given in hertz. The following multiplicity abbreviations are used: s, singlet; d , doublet; t , triplet; q , quartet; m , massif or multiplet. Where applicable, assignments were based HMBC, HSQC, and ${ }^{13} \mathrm{C}$ experiments. Thin-layer chromatography (TLC) was performed on MacheryNagel Alugram TLC aluminum sheets, silica gel 60 and F254. Progression of reactions was, when applicable, followed by TLC. Visualizing of spots was effected with UV light and/or vanillin in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{SO}_{4}$. Flash chromatography was performed manually with VWR silica gel $40-63 \mu \mathrm{~m}$ or on Büchi C-815 Flash Pure chromatography system equipped with FlashPure ID silica cartridge. HRMS was recorded on a Micromass Q-Tof Micro (3000 V) apparatus or a Q Exactive QuadrupoleOrbitrap Mass Spectrometer. Liquid chromatography-mass spectrometry was recorded on a Q Exactive Quadrupole-Orbitrap mass spectrometer coupled to a UPLC Ultimate 3000 (Kinetex EVO C18); $1.7 \mu \mathrm{~m} ; 100 \mathrm{~mm} \times 2.1 \mathrm{~mm}$ column with a flow rate of $0.45 \mathrm{~mL} / \mathrm{min}$ with the following gradient: a linear gradient of solvent B from 5 to 95% over 7.5 min (solvent $A=\mathrm{H}_{2} \mathrm{O}+0.1 \%$ formic acid, solvent $B=$ acetonitrile $+0.1 \%$ formic acid) equipped with a DAD UV/vis 3000 RS detector. X-ray data were collected at 100 K with an Oxford Diffraction Xcalibur 2 diffractometer equipped with a copper microsource ($\lambda=1.5418 \AA$). HPLC analysis was performed on an Agilent 1100 series system composed of an autosampler G1329A, a G1379A degasser, a G1311A quaternary pump, a TCC-100 thermostated column compartment at $25^{\circ} \mathrm{C}$ and a G1315A Diode Array Detector (DAD). Infrared analysis was recorded on a SHIMADZU FTIR-8400S spectrometer equipped with a Pike Technologies MIRacle ${ }^{\mathrm{TM}}$ ATR. Wave numbers (v) are expressed in cm^{-1}. Spectra were recorded with 16 scans, between 800 and $4000 \mathrm{~cm}^{-1}$.

2. Synthesis of peptoid oligomers 1-6

a) Submonomer synthesis of peptoids 1-5

Scheme S1. Stepwise synthesis of peptoid 1-5 and yields for each acylation-substitution submonomer cycle.

b) General procedures

General procedure A (peptoid bromoacylation)

To a solution of hydrazine $\mathbf{1 a - 4 a}\left(1.0 \mathrm{eq}, 0.2 \mathrm{M} / \mathrm{THF}\right.$) and $E t_{3} \mathrm{~N}$ (1.2 eq.) under argon atmosphere at $-10^{\circ} \mathrm{C}$, was slowly added bromoacetyl bromide (1.05 to 1.2 eq .) and the reaction was stirred for 15 to 30 min at $-10^{\circ} \mathrm{C}$. The reaction mixture was then diluted with ethyl acetate ($10 \mathrm{~mL} / \mathrm{mmol}$) and the formed ammonium salts were filtered. The filtrate was evaporated, resulting in new salts, which were again filtered under vacuum. The filtrate was dried under vacuum and the crude bromoacylated peptoid was purified by column chromatography on silica gel.

General procedure B (substitution of the bromoacetamide intermediate)

To a solution of bromoacetamide (1.0 eq., $1.25 \mathrm{M} / 1: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$) was added 1-Boc-1methylhydrazine (3.0 eq.) and the solution was stirred overnight at $60^{\circ} \mathrm{C}$. The reaction mixture was then diluted with water and methanol was evaporated under vacuum. The peptoid was then extracted three times with ethyl acetate and the organic layer washed with water ($3 x$) and brine. The organic phase was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel.

General procedure C (acetylation)

To a solution of peptoid (1.0 eq., $0.2 \mathrm{M} / \mathrm{EtOAc}$) and $\mathrm{Et}_{3} \mathrm{~N}$ (4.0 eq.) was added acetic anhydride (8.0 eq.). The mixture was stirred for 48 h at room temperature. After completion of the reaction, the solution was diluted with ethyl acetate and successively washed with aq. saturated $\mathrm{NaHCO}_{3}(3 x)$, water, aq. saturated $\mathrm{NH}_{4} \mathrm{Cl}(3 x)$, water and brine. The organic phase was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude acetylated peptoid thus obtained was purified by flash chromatography on silica gel.

General procedure D (Boc deprotection)

The protected peptoid was solubilized in a TFA/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture $(1: 1)$ at $0{ }^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature for 30 min . After that, the solution was concentrated under vacuum, the resulting oil was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was evaporated again under vacuum. This operation was repeated several times to eliminate the remaining traces of TFA. The final compounds were purified by flash chromatography on silica gel.

Monomer 1

Benzyl bromoacetate ($0.50 \mathrm{~mL}, 3.14 \mathrm{mmol}, 1.0 \mathrm{eq}$) was reacted with 1-Boc-1-methylhydrazine ($1.4 \mathrm{~mL}, 9.42 \mathrm{mmol}, 3$ eq.) in $1.26 \mathrm{~mL}(2.5 \mathrm{M}$) of water, at room temperature, overnight. The mixture was then diluted with water and the desired compound was extracted three times with ethyl acetate. The organic layer was washed with water (3 x) and brine, dried over MgSO 4 and evaporated under reduced pressure. The remaining residue was purified on silica gel (cyclohexane/EtOAc $4: 1$) to produce 92% of monomer 1a. The latter was acetylated (general procedure C), to yield the Boc-protected monomer 1b in 91% yield after purification on silica gel (cyclohexane/EtOAc 4:1). Finally, the Boc group was removed following general procedure D, yielding monomer 1 as a colourless oil ($594 \mathrm{mg}, 2.52 \mathrm{mmol}$) in an overall yield of 83% after purification on silica gel (cyclohexane/EtOAc 3:2).
$R_{\mathrm{f}}=0,27$ (Cyclohexane/EtOAc 1:1), HRMS (TOF MS ES +): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 237.1161, found 237.1234. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): δ (ppm): 1.96 (s, 0.32 H, Ac cis rotamer), 2.05 (s, 2.68 H, Ac trans rotamer), 2.40 and $2.44\left(2 \times \mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NH}\right), 4.22\left(\mathrm{~s}, 1.80 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=0\right.$ trans rotamer), 4.35 (s, $0.20 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=0$ cis rotamer), $4.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 5.13\left(\mathrm{~s}, 1.80 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ trans rotamer), 5.17 (s, 0.20H, $\mathrm{CH}_{2} \mathrm{Ph}$ cis rotamer), 7.35-7.37 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}): 20.5\left(\mathrm{CH}_{3}, \mathrm{Ac}\right.$ trans rotamer), $21.0\left(\mathrm{CH}_{3}, \mathrm{Ac}\right.$ cis rotamer), 35.3 $\left(\mathrm{CH}_{3}, \boldsymbol{C H} \mathrm{H}_{3} \mathrm{NH}\right.$ trans rotamer), $36.8\left(\mathrm{CH}_{3}, \boldsymbol{C H} 3 \mathrm{NH}\right.$ cis rotamer $), 43.9\left(\mathrm{CH}_{2}, \mathrm{~N} \boldsymbol{C H} \mathrm{H}_{2} \mathrm{C}=0\right.$ trans rotamer $)$,
$52.3\left(\mathrm{CH}_{2}, \mathrm{NCH} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right.$ cis rotamer), $67.0\left(\mathrm{CH}_{2}, \boldsymbol{C H} \mathrm{H}_{2} \mathrm{Ph}\right.$ trans rotamer $), 67.4\left(\mathrm{CH}_{2}, \boldsymbol{C H}_{2} \mathrm{Ph}\right.$ cis rotamer $)$, 128.3, 128.5, $128.6\left(5 \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 135.2\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 168.9\left(\mathrm{C}, \mathrm{CO}_{2} \mathrm{Bn}\right.$ cis rotamer), $169.3\left(\mathrm{C}, \mathrm{CO}_{2} \mathrm{Bn}\right.$ trans rotamer), $170.3\left(\mathrm{C}, \mathrm{CH}_{3} \mathrm{C}(=0) \mathrm{N}\right.$ cis rotamer), $174.4\left(\mathrm{C}, \mathrm{CH}_{3} \mathrm{C}(=0) \mathrm{N}\right.$ trans rotamer $)$.

Dimer 2 (stepwise synthesis from monomer 1a)

Monomer 1a ($0.958 \mathrm{~g}, 2.85 \mathrm{mmol}$, 1eq.) was bromoacylated according to general procedure \mathbf{A} (purification SiO_{2} column, cyclohexane/EtOAc 4:1). Next, the formed bromoacetamide intermediate was engaged in the substitution step with 1-Boc-1-methylhydrazine according to general procedure B, yielding dimer 2a in 76% yield (2 steps) after column chromatography (SiO_{2}, cyclohexane/EtOAc 4:1). Acetylation of $\mathbf{2 a}$ (general procedure \mathbf{C}), gave the Boc-protected dimer 2b in 82% yield after column chromatography (SiO_{2}, cyclohexane/EtOAc 7:3). Finally, the Boc groups were removed following general procedure \mathbf{D}, to give dimer $\mathbf{2}$ as a colourless oil which solidified upon redissolution in chloroform and evaporation ($342 \mathrm{mg}, 1.06 \mathrm{mmol}$) in an overall yield of 37% after SiO_{2} chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$.
$R_{\mathrm{f}}=0.21\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$, HRMS (TOF MS ES +): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+323.1641$, found 323.1714. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta(\mathrm{ppm}): 1.84$ (s, $0.4 \mathrm{H}, \mathrm{Ac}$), 2.03-2.05 (m, 2.6H, Ac), 2.40-2.46 (m, $\left.6 \mathrm{H}, 2 \times \mathrm{CH}_{3} \mathrm{NH}\right), 4.25-4.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bn}\right), 4.46-4.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=0\right), 4.62$ (m, 1H, NH), $4.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 5.14\left(\mathrm{~s}, 1.9 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.18\left(\mathrm{~s}, 0.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.33-7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the major conformer: $\delta(\mathrm{ppm}): 20.7\left(\mathrm{CH}_{3}, \mathrm{Ac}\right), 34.9,35.2\left(\mathrm{CH}_{3}\right.$, $\left.2 \times \mathrm{NHCH}_{3}\right), 42.7,44.0\left(\mathrm{CH}_{2}, 2 \times \mathrm{N} \boldsymbol{C H} \mathrm{H}_{2} \mathrm{C}=0\right), 67.3\left(\mathrm{CH}_{2}, \boldsymbol{C H} \mathrm{H}_{2} \mathrm{Ph}\right), 128.4,128.6,128.7\left(5 \boldsymbol{C H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 135.0$ $\left(\mathrm{C}_{i p s o}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 168.8\left(\mathrm{C}, \boldsymbol{C O}_{2} \mathrm{Bn}\right), 171.7\left(\mathrm{C}, \mathrm{NCH}_{2} \boldsymbol{C}(=\mathrm{O}) \mathrm{N}\right), 175.0\left(\mathrm{C}, \mathrm{CH}_{3} \boldsymbol{C}(=0) \mathrm{N}\right)$.

Trimer 3 (stepwise synthesis from dimer 2a)

Dimer 2a (1.356 g, 2.59 mmol , 1eq.) was bromoacylated according to general procedure \mathbf{A}, followed by substitution of the bromine atom with 1-Boc-1-methylhydrazine according to general procedure B to produce 67% over two steps of trimer 3a. Acetylation of 3a (general procedure \mathbf{C}), gave the Boc-protected trimer $\mathbf{3 b}$ in 84% yield after column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc 7:3). Finally, the Boc groups were removed following general procedure \mathbf{D}, to give trimer 3 as a pale yellow oil ($347 \mathrm{mg}, 0.850 \mathrm{mmol}$) in an overall yield of 33% after SiO_{2} chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 97: 3\right)$.
$R_{\mathrm{f}}=0.13\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$, HRMS (TOF MS ES +): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+409.2121$ found 409.2194. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta(\mathrm{ppm}): 1.92$ and 2.03-2.05 (m, 3H, Ac), 2.38-2.47 ($\mathrm{m}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3} \mathrm{NH}$), 4.27-4.29 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bn}$), 4.46-4.57 (m, $4 \mathrm{H}, 2 \times \mathrm{NCH}_{2} \mathrm{C}=0$), $4.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH})$, 5.14(s, 1.95H, $\mathrm{CH}_{2} \mathrm{Ph}$), 5.19 ($\mathrm{s}, 0.05 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 7.33-7.38 (m, $5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of the major conformer: $\delta(\mathrm{ppm}): 20.6\left(\mathrm{CH}_{3}, \mathrm{Ac}\right), 34.8,34.9,35.1\left(\mathrm{CH}_{3}\right.$, $\left.3 \times \mathrm{NHCH}_{3}\right), 43.0,43.2,44.1\left(\mathrm{CH}_{2}, 3 \times \mathrm{NCH}_{2} \mathrm{C}=0\right), 67.3\left(\mathrm{CH}_{2}, \boldsymbol{C H}_{2} \mathrm{Ph}\right), 128.4,128.6,128.7\left(5 \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $134.9\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 168.8\left(\mathrm{C}, \mathrm{CO}_{2} \mathrm{Bn}\right), 171.3,171.8\left(\mathrm{C}, 2 \times \mathrm{NCH}_{2} \boldsymbol{C}(=0) \mathrm{N}\right), 175.1\left(\mathrm{C}, \mathrm{CH}_{3} \boldsymbol{C}(=0) \mathrm{N}\right)$.

Tetramer 4 (stepwise synthesis from trimer 3a)

Trimer 3a ($0.992 \mathrm{~g}, 1.49 \mathrm{mmol}$) was bromoacetylated according to general procedure \mathbf{A}, followed by substitution of the bromine atom with 1-Boc-1-methylhydrazine according to general procedure B to produce 56% over two steps of tetramer $\mathbf{4 a}(0.709 \mathrm{~g}, 0.83 \mathrm{mmol})$. Acetylation of $\mathbf{4 a}$ (general procedure \mathbf{C}), gave the Boc-protected tetramer $\mathbf{4 b}(0.610 \mathrm{~g}, 0.68 \mathrm{mmol})$ in 82% yield after column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc 7:3). Finally, the Boc groups were removed following general procedure \mathbf{D}, to give tetramer 4 as a pale yellow oil ($0.207 \mathrm{~g}, 0.42$ $\mathrm{mmol})$ in an overall yield of 29% after SiO_{2} chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$.
$R_{\mathrm{f}}=0.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$, HRMS (TOF MS ES +): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]+495.2601$ found 495.2674. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6): $\delta(\mathrm{ppm}): 1.92-2.06(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ac}), 2.41-2.47(\mathrm{~m}, 12 \mathrm{H}$, $\left.4 \times \mathrm{CH}_{3} \mathrm{NH}\right), 4.19-4.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bn}\right), 4.46-4.55\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{NCH}_{2} \mathrm{C}=0\right), 4.68-4.96(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{NH})$, 5.14-5.19 (m, 2H, $\mathrm{CH}_{2} \mathrm{Ph}$), 7.33-7.38 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of the major conformer: $\delta(\mathrm{ppm}): 20.6\left(\mathrm{CH}_{3}, \mathrm{Ac}\right), 34.8,34.9,35.1\left(\mathrm{CH}_{3}\right.$, $\left.4 \times \mathrm{NHCH}_{3}\right), 43.0,43.3,43.4,44.1\left(\mathrm{CH}_{2}, 4 \times \mathrm{NCH}_{2} \mathrm{C}=0\right), 67.4\left(\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{Ph}\right), 128.4,128.7\left(5 \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $134.9\left(\mathrm{C}_{i p s o}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 168.8\left(\mathrm{C}, \mathrm{CO}_{2} \mathrm{Bn}\right), 171.2\left(\mathrm{C}, 3 \times \mathrm{NCH}_{2} \boldsymbol{C}=0\right)$.

Pentamer 5 (stepwise synthesis from tetramer 4a)

Tetramer $4 \mathbf{a}(0.913 \mathrm{~g}, 1.07 \mathrm{mmol})$ was bromoacetylated according to general procedure \mathbf{A}, followed by substitution of the bromine atom with 1-Boc-1-methylhydrazine according to general procedure B to produce 59% over two steps of pentamer $5 \mathbf{a}(0.657 \mathrm{~g}, 0.63 \mathrm{mmol})$. Acetylation of $\mathbf{5 a}$ (general procedure C), gave the Boc-protected pentamer $\mathbf{5 b}$ ($0.500 \mathrm{~g}, 0.46 \mathrm{mmol}$) in 73% yield after column chromatography $\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc 7:3). Finally, the Boc groups were removed following general procedure \mathbf{D}, to give pentamer 5 as colourless foam ($0.195 \mathrm{~g}, 0.33$ $\mathrm{mmol})$ in an overall yield of 31% after SiO_{2} chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$.
$R_{\mathrm{f}}=0.23\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$, HRMS (TOF MS ES +): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{~N}_{10} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]+581.3081$ found 581.3152. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta(\mathrm{ppm}): 1.92-2.03(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ac}), 2.42-2.47(\mathrm{~m}, 15 \mathrm{H}$, $\left.5 \times \mathrm{NHCH}_{3}\right), 4.19-4.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bn}\right), 4.40-4.48\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{NCH}_{2} \mathrm{C}=0\right), 4.69-4.95(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{NH})$, 5.14-5.19 (m, 2H, $\mathrm{CH}_{2} \mathrm{Ph}$), 7.32-7.38 (m, 5H, $\mathrm{C}_{6} \mathrm{H}_{5}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of the major conformer: $\delta(\mathrm{ppm}): 20.6\left(\mathrm{CH}_{3}, \mathrm{Ac}\right), 34.8,35.1\left(\mathrm{CH}_{3}\right.$, $\left.5 \times \mathrm{NHCH}_{3}\right), 43.6,43.7,44.4\left(\mathrm{CH}_{2}, 5 \times \mathrm{NCH}_{2} \mathrm{C}=0\right), 67.3\left(\mathrm{CH}_{2}, \boldsymbol{C H} \mathrm{H}_{2} \mathrm{Ph}\right), 128.3,128.6,128.7\left(5 \mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $135.0\left(\mathrm{C}_{\text {ipso }}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 168.9\left(\mathrm{C}, \mathrm{CO}_{2} \mathrm{Bn}\right)$.

Monomer A

To a solution of piperidine ($0.5 \mathrm{~mL}, 5.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in 25 mL of THF cooled to $-10{ }^{\circ} \mathrm{C}$ under argon atmosphere was added triethylamine ($0.86 \mathrm{~mL}, 6.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , followed by slow$ addition of bromoacetyl bromide ($0.54 \mathrm{~mL}, 6.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) . The mixture was stirred for 1 \mathrm{~h}$ at $-10^{\circ} \mathrm{C}$. It was then diluted with 50 mL of ethyl acetate and the formed salts were filtered off before evaporating the solvent under reduced pressure. The crude piperidinyl bromoacetamide was then reacted with 1-Boc-1-methylhydrazine ($2.27 \mathrm{~mL}, 3 \mathrm{eq}$.) in 2 mL of water, following the protocol for the synthesis of monomer 1a. The desired compound, isolated in 60% yield ($0.822 \mathrm{~g}, 3.03$ mmol), was acetylated in 74% yield ($0.697 \mathrm{~g}, 2.23 \mathrm{mmol}$) following general procedure C. Finally, the Boc group was removed following general procedure \mathbf{D}, yielding model peptoid \mathbf{A} in 54% yield ($0.256 \mathrm{~g}, 1.20 \mathrm{mmol}$).
$R_{\mathrm{f}}=0.17\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right),{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm}): 1.56-1.66(\mathrm{~m}, 6 \mathrm{H}, \mathrm{pip}), 2.08$ (s, $0.28 \mathrm{H}, \mathrm{Ac}$ cis rotamer), 2.25 (s, 2.72 H, Ac trans rotamer), $2.56\left(\mathrm{~s}, 2.79 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NH}\right.$ trans rotamer), $2.69\left(\mathrm{~s}, 0.21 \mathrm{H}, \mathrm{CH}_{3} \mathrm{NH}\right.$ cis rotamer), $3.35-3.55$ (m, $4 \mathrm{H}, \mathrm{pip}$), 4.42 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{C}=0$).

c) Segment-coupling reactions

Scheme S2. Evaluation of mixed anhydride methods: (1+1) coupling of acid 1c and hydrazine 1a.

Synthesis of the acid partner 1 c from 1a.

To a solution of monomer $\mathbf{1 a}$ ($1.541 \mathrm{~g}, 5.24 \mathrm{mmol}$) in dioxane (7 mL) cooled to $0^{\circ} \mathrm{C}$, was added 14 mL of a $10 \% \mathrm{w} / \mathrm{w}$ aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, followed by the slow addition of a solution of Fmocll ($1.35 \mathrm{~g}, 5.23 \mathrm{mmol}, 1.0$ eq.) in 14 mL of dioxane. Stirring was maintained at $0^{\circ} \mathrm{C}$ for 1 h , and 3 h at room temperature. The desired compound was then extracted with ethyl acetate and the organic layer dried over MgSO_{4} and evaporated under vacuum. The mixture was purified by flash chromatography on silica gel (cyclohexane/EtOAc 4:1; $2.43 \mathrm{~g}, 4.71 \mathrm{mmol}, 90 \%$ yield). For the hydrogenolysis of the benzyl ester, the obtained compound was dissolved in 110 mL of MeOH and $10 \% \mathrm{Pd} / \mathrm{C}(118 \mathrm{mg})$ was added to the solution. Hydrogen was bubbled into the solution until it was saturated (H_{2} inflated balloon) and the mixture was stirred for 1 h , while maintaining a hydrogen atmosphere above the solution. Pd/C was then filtered off through a pad of celite and the filtrate evaporated under reduced pressure. Pure monomer acid 1c ($1.55 \mathrm{~g}, 3.64 \mathrm{mmol}$) was isolated as a colourless solid in 77% yield after purification by chromatography on silica gel (cyclohexane/EtOAc 1:1 to 1:9).

Isobutyl chloroformate (IBCF) mediated coupling of monomers 1a and 1c (optimized conditions with 2.1 equivalents of monomer acid 1c).

To a solution of monomer acid $\mathbf{1 c}$ ($200 \mathrm{mg}, 0.47 \mathrm{mmol}, 2.1$ eq.) in DMF (1.75 mL) at $-10^{\circ} \mathrm{C}$ under argon atmosphere was added N-methylmorpholine (NMM) ($32 \mu \mathrm{~L}, 0.45 \mathrm{mmol}, 1.0$ eq.) followed by IBCF ($58 \mu \mathrm{~L}, 0.45 \mathrm{mmol}, 2.0 \mathrm{eq}$.). The reaction was stirred at $-10^{\circ} \mathrm{C}$ for 10 min , then a solution of monomer 1a ($66 \mathrm{mg}, 0.22 \mathrm{mmol}, 1 \mathrm{eq}$.) in DMF (0.56 mL) was added and the temperature was allowed to rise to room temperature. Stirring was maintained for 24 h at room temperature, after which the medium was diluted with water and extracted with ethyl acetate. The organic phase was dried over MgSO_{4}, concentrated under reduced pressure and finally purified on a silica gel column (cyclohexane/EtOAc 4:1), to produce dimer 2d ($121 \mathrm{mg}, 0.17 \mathrm{mmol}$) as a colourless oil in 78% yield.
N-Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-mediated coupling of
monomers 1a and 1c (optimized conditions with 1.5 equivalents of monomer acid 1c).
To a solution of monomer acid $\mathbf{1 c}(652 \mathrm{mg}, 1.53 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) in 1,4-dioxane (1.5 \mathrm{~mL}$) was added monomer 1a ($300 \mathrm{mg}, 1.02 \mathrm{mmol}, 1.0 \mathrm{eq}$.) dissolved in 1,4-dioxane (1.0 mL) followed by addition of EEDQ ($378 \mathrm{mg}, 1.53 \mathrm{mmo}, 11.5 \mathrm{eq}$.) and the mixture was stirred for 24 h at $60^{\circ} \mathrm{C}$. The solution was then diluted with ethyl acetate and successively washed with $1 \mathrm{M} \mathrm{HCl}(3 \mathrm{x})$, aq. saturated $\mathrm{NaHCO}_{3}(3 \mathrm{x})$, water and brine. The organic layer was dried over MgSO_{4}, filtrated and concentrated under reduced pressure. The remaining residue was purified on a silica gel column (cyclohexane/EtOAc 4:1), to produce dimer 2d as a colourless oil ($680 \mathrm{mg}, 0.67 \mathrm{mmol}$) in 95% yield.

Scheme S3. Synthesis of peptoid 6 by a (3+3) segment coupling of trimer Ac$N(N B o c M e)_{3}-0 H$ and trimer $\mathrm{H}-\mathrm{N}(\mathrm{NBocMe})_{3}-\mathrm{OBn}$, using Mukaiyama's reagent, 2-chloro-1-methylpyridinium iodide (CMPI).

Hydrogenolysis of the benzyl ester of trimer 3b.
To a solution of trimer $\mathbf{3 b}(0.60 \mathrm{~g}, 0.85 \mathrm{mmol})$ in $\mathrm{MeOH}(28 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{mg}, 5 \%$ wt). Hydrogen was bubbled into the solution until it was saturated (H_{2} inflated balloon) and the mixture was stirred for 30 min , while maintaining a hydrogen atmosphere above the solution. Pd/C was then filtered off through a pad of celite and the filtrate was evaporated under reduced pressure to give the trimer $\mathbf{3 - 0 H}(0.479 \mathrm{~g}, 0.78 \mathrm{mmol}, 92 \%)$ as a white solid, used in the coupling reaction without any purification.

$(3+3)$ segment coupling of trimers $3-0 H$ and 3 a using Mukaiyama's reagent, 2-chloro-1methylpyridinium iodide.

To a solution of hydrazine $\mathbf{3 a}(66.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , and acid \mathbf{3 - 0 H}(61.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 2 -chloro-1-methylpyridinium iodide ($30.7 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ eq.) under argon atmosphere, followed by the addition of $n \mathrm{NBu}_{3}(57 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 2.4$ eq.). The reaction mixture was heated under reflux for 5 hours, after which TLC monitoring indicated complete conversion of the substrates. The solution was cooled down, diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and successively washed with aq. saturated $\mathrm{NaHCO}_{3}(3 \mathrm{x})$, water, aq. saturated $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{x})$ and brine. The organic layer was dried over MgSO_{4}, filtered and concentrated under vacuum. Purification of the crude by flash chromatography on silica gel (cyclohexane/EtOAc 1:1) gave the Boc-protected hexamer as a yellowish oil ($90 \mathrm{mg}, 0.071 \mathrm{mmol}, 71 \%$ yield). The Boc groups were removed following general procedure \mathbf{D}, producing 66% of hexamer 6 as a colourless oil (31 mg , 0.047 mmol) after column chromatography ($\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 96: 4$).
$R_{\mathrm{f}}=0,34\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$, HRMS (TOF MS ES +): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{47} \mathrm{~N}_{12} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]+667.3634$ found 667.3625. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6): $\delta(\mathrm{ppm}): 1.86-2.03(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ac}), 2.41-2.47(\mathrm{~m}, 18 \mathrm{H}$, $\left.6 \times \mathrm{CH}_{3} \mathrm{NH}\right), 4.18-4.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Bn}\right), 4.42-4.48\left(\mathrm{~m}, 10 \mathrm{H}, 5 \times \mathrm{NCH}_{2} \mathrm{C}=0\right), 4.63-4.96(\mathrm{~m}, 6 \mathrm{H}$, $6 \times \mathrm{NH}), 5.14-5.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.34-7.36\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$.

3. X-ray crystallographic data for peptoid 2

Crystal Structure Report for dimer 2 (Ac-NNMe-NNMe-OBn)

Crystals of dimer 2 suitable for X-ray crystallography were grown by slow evaporation from chloroform solution.

A specimen of $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$, approximate dimensions $0.134 \mathrm{~mm} \times 0.142 \mathrm{~mm} \times 0.624 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda=0.71073 \AA$).

The total exposure time was 8.83 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 122188 reflections to a maximum θ angle of 30.51° (0.70 Å resolution), of which 5015 were independent (average redundancy 24.365 , completeness $\left.=99.9 \%, \mathrm{R}_{\text {int }}=7.96 \%, \mathrm{R}_{\text {sig }}=3.12 \%\right)$ and $3393(67.66 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=10.3108(12) \AA, \underline{b}=11.2142(12) \AA, \underline{c}=28.442(3) \AA$, volume $=3288.7(6) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 523 reflections above 20σ (I) with $4.921^{\circ}<2 \theta$ $<56.00^{\circ}$. Data were corrected for absorption effects using the Numerical Mu From Formula method (SADABS). The ratio of minimum to maximum apparent transmission was 0.920 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9430 and 0.9870 .

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P b c a, with $\mathrm{Z}=8$ for the formula unit, $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 219 variables converged at $\mathrm{R} 1=4.10 \%$, for the observed data and $w R 2=10.42 \%$ for all data. The goodness-of-fit was 1.005 . The largest peak in the final difference electron density synthesis was $0.230 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.222 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.045 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.302 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 1376 \mathrm{e}$.

Thermal ellipsoid plot at 50\% probability levels for dimer 2

Sample and crystal data for dimer 2.		
Identification code	Dimer 2	
Chemical formula	$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$	
Formula weight	$322.36 \mathrm{~g} / \mathrm{mol}$	
Temperature	$173(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	$0.134 \times 0.142 \mathrm{x} 0.624 \mathrm{~mm}$	
Crystal system	orthorhombic	
Space group	Pb c a	$\beta=90^{\circ}$
Unit cell dimensions	$\mathrm{a}=10.3108(12) \AA$	$\gamma=90^{\circ}$
	$\mathrm{b}=11.2142(12) \AA$	
Volume	$\mathrm{c}=28.442(3) \AA$	
Z	$3288.7(6) \AA^{3}$	
Density (calculated)	8	
Absorption coefficient	$1.302 \mathrm{~g} / \mathrm{cm}^{3}$	
F(000)	$0.096 \mathrm{~mm}^{-1}$	
	1376	

Data collection and structure refinement for dimer 2.
Theta range for data collection 2.78 to 30.51°

Index ranges	$-14<=\mathrm{h}<=14,-15<=\mathrm{k}<=15,-40<=\mathrm{l}<=40$
Reflections collected	122188
Independent reflections	5015 [R (int) $=0.0796$]
Coverage of independent reflections	99.9\%
Absorption correction	Numerical Mu From Formula
Max. and min. transmission	0.9870 and 0.9430
Structure solution technique	direct methods
Structure solution program	SHELXT 2018/2 (Sheldrick, 2018)
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$
Data / restraints / parameters	5015 / 0 / 219
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.005
$\Delta / \sigma_{\text {max }}$	0.001

Final R indices	$3393 \text { data; } \mathrm{I}>2 \sigma(\mathrm{I}) \begin{aligned} & \mathrm{R} 1=0.0410, \quad \mathrm{wR} 2= \\ & 0.0889 \end{aligned}$
	all data $\mathrm{R} 1=0.0753, w R 2=$ 0.1042
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}_{0}{ }^{2}\right)+(0.0396 \mathrm{P})^{2}+1.1109 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(\mathrm{F}_{0}^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3 \end{aligned}$
Largest diff. peak and hole	0.230 and -0.222 e \AA^{-3}
R.M.S. deviation from mean	$0.045 \mathrm{e}^{\AA}-3$

Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $\operatorname{Dimer} 2$.

$U(e q)$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U}(\mathbf{e q})$
O1	$0.23723(9)$	$0.37377(8)$	$0.64455(3)$	$0.0274(2)$
O2	$0.34197(8)$	$0.53731(7)$	$0.51078(3)$	$0.02509(19)$
O3	$0.16219(9)$	$0.62881(8)$	$0.40681(3)$	$0.0322(2)$
O4	$0.28570(9)$	$0.23785(8)$	$0.58921(3)$	$0.0308(2)$
N1	$0.19208(10)$	$0.39190(9)$	$0.51903(3)$	$0.0215(2)$
N2	$0.13331(10)$	$0.29388(9)$	$0.49668(4)$	$0.0226(2)$
N3	$0.47836(10)$	$0.51133(10)$	$0.40615(4)$	$0.0258(2)$
C1	$0.35167(15)$	$0.70303(12)$	$0.36809(5)$	$0.0329(3)$
C2	$0.27802(12)$	$0.61597(11)$	$0.39809(4)$	$0.0243(3)$
N4	$0.34383(10)$	$0.52029(9)$	$0.41434(3))$	$0.0229(2)$
C4	$0.27706(12)$	$0.42942(10)$	$0.44125(4)$	$0.0224(2)$
C5	$0.27471(11)$	$0.45849(10)$	$0.49340(4)$	$0.0189(2)$
C6	$0.16960(12)$	$0.41735(11)$	$0.56840(4)$	$0.0234(2)$
C7	$0.23911(12)$	$0.33153(11)$	$0.60033(4)$	$0.0217(2)$
C8	$0.29476(15)$	$0.29743(12)$	$0.67966(4)$	$0.0334(3)$
C9	$0.32829(12)$	$0.37030(12)$	$0.72216(4)$	$0.0270(3)$
C10	$0.41336(14)$	$0.32179(13)$	$0.75465(5)$	$0.0356(3)$
C11	$0.44338(16)$	$0.38345(16)$	$0.79525(5)$	$0.0460(4)$
C12	$0.39198(16)$	$0.49446(15)$	$0.80348(5)$	$0.0434(4)$
C13	$0.27565(15)$	$0.48148(13)$	$0.73088(5)$	$0.0370(3)$
C14	$0.30825(17)$	$0.54396(14)$	$0.77135(5)$	$0.0433(4)$
C15	$0.99346(13)$	$0.30385(13)$	$0.49262(5)$	$0.0349(3)$
C3	$0.50929(14)$	$0.41495(13)$	$0.37358(5)$	$0.0357(3)$

Bond lengths (\AA) for dimer 2.

O1-C7	$1.3441(14)$	O1-C8	$1.4428(15)$
O2-C5	$1.2275(13)$	O3-C2	$1.2282(16)$
O4-C7	$1.1977(15)$	N1-C5	$1.3472(15)$
N1-N2	$1.4071(13)$	N1-C6	$1.4513(15)$
N2-C15	$1.4509(17)$	N2-H10	$0.874(16)$
N3-N4	$1.4102(14)$	N3-C3	$1.4588(17)$
N3-H11	$0.887(16)$	C1-C2	$1.5027(17)$
C1-H14	0.98	C1-H13	0.98
C1-H1	0.98	C2-N4	$1.3511(15)$
N4-C4	$1.4484(15)$	C4-C5	$1.5189(16)$
C4-H4A	0.99	C4-H4B	0.99
C6-C7	$1.5050(17)$	C6-H21	0.99
C6-H20	0.99	C8-C9	$1.4996(18)$
C8-H5	0.99	C8-H6	0.99
C9-C13	$1.3822(19)$	C9-C10	$1.3854(18)$
C10-C11	$1.381(2)$	C10-H22	0.95
C11-C12	$1.373(2)$	C11-H23	0.95

C12-C14	$1.374(2)$	C12-H2	0.95
C13-C14	$1.389(2)$	C13-H3	0.95
C14-H4	0.95	C15-H8	0.98
C15-H7	0.98	C15-H9	0.98
C3-H17	0.98	C3-H16	0.98
C3-H15	0.98		

Bond angles $\left({ }^{\circ}\right)$ for dimer 2.

C7-01-C8	115.63(10)	C5-N1-N2	117.44(9)
C5-N1-C6	121.03(10)	N2-N1-C6	121.47(9)
N1-N2-C15	113.81(10)	N1-N2-H10	108.0(10)
C15-N2-H10	113.9(10)	N4-N3-C3	111.89(10)
N4-N3-H11	108.8(10)	C3-N3-H11	110.1(10)
C2-C1-H14	109.5	C2-C1-H13	109.5
H14-C1-H13	109.5	C2-C1-H1	109.5
H14-C1-H1	109.5	H13-C1-H1	109.5
O3-C2-N4	120.82(11)	03-C2-C1	122.00(12)
N4-C2-C1	117.15(11)	C2-N4-N3	119.61(10)
C2-N4-C4	120.05(10)	N3-N4-C4	120.32(10)
N4-C4-C5	111.87(10)	N4-C4-H4A	109.2
C5-C4-H4A	109.2	N4-C4-H4B	109.2
C5-C4-H4B	109.2	H4A-C4-H4B	107.9
O2-C5-N1	122.57(10)	02-C5-C4	122.61(10)
N1-C5-C4	114.82(10)	N1-C6-C7	112.46(10)
N1-C6-H21	109.1	C7-C6-H21	109.1
N1-C6-H20	109.1	C7-C6-H20	109.1
H21-C6-H20	107.8	04-C7-01	124.20(11)
04-C7-C6	126.34(11)	01-C7-C6	109.42(10)
01-C8-C9	109.23(11)	01-C8-H5	109.8
C9-C8-H5	109.8	01-C8-H6	109.8
C9-C8-H6	109.8	H5-C8-H6	108.3
C13-C9-C10	118.89(12)	C13-C9-C8	123.07(12)
C10-C9-C8	118.01(12)	C11-C10-C9	120.20(14)
C11-C10-H22	119.9	C9-C10-H22	119.9
C12-C11-C10	120.66(14)	C12-C11-H23	119.7
C10-C11-H23	119.7	C11-C12-C14	119.69(14)
C11-C12-H2	120.2	C14-C12-H2	120.2
C9-C13-C14	120.58(13)	C9-C13-H3	119.7
C14-C13-H3	119.7	C12-C14-C13	119.96(15)
C12-C14-H4	120.0	C13-C14-H4	120.0
N2-C15-H8	109.5	N2-C15-H7	109.5
H8-C15-H7	109.5	N2-C15-H9	109.5
H8-C15-H9	109.5	H7-C15-H9	109.5
N3-C3-H17	109.5	N3-C3-H16	109.5
H17-C3-H16	109.5	N3-C3-H15	109.5
H17-C3-H15	109.5	H16-C3-H15	109.5

Torsion angles (${ }^{\circ}$) for dimer 2.

C5-N1-N2-C15	$-116.06(12)$	C6-N1-N2-C15	$66.78(14)$
O3-C2-N4-N3	$-176.29(11)$	C1-C2-N4-N3	$5.36(16)$
O3-C2-N4-C4	$1.83(17)$	C1-C2-N4-C4	$-176.53(11)$
C3-N3-N4-C2	$-111.59(13)$	C3-N3-N4-C4	$70.30(14)$
C2-N4-C4-C5	$-87.79(13)$	N3-N4-C4-C5	$90.31(13)$
N2-N1-C5-O2	$-171.57(10)$	C6-N1-C5-02	$5.60(17)$
N2-N1-C5-C4	$9.09(15)$	C6-N1-C5-C4	$-173.73(10)$
N4-C4-C5-O2	$-12.53(16)$	N4-C4-C5-N1	$166.80(10)$
C5-N1-C6-C7	$-103.36(13)$	N2-N1-C6-C7	$73.70(14)$
C8-01-C7-O4	$-0.79(18)$	C8-O1-C7-C6	$176.91(11)$
N1-C6-C7-O4	$-15.19(17)$	N1-C6-C7-01	$167.17(10)$
C7-01-C8-C9	$160.12(11)$	O1-C8-C9-C13	$18.09(19)$
O1-C8-C9-C10	$-163.74(12)$	C13-C9-C10-C11	$0.7(2)$
C8-C9-C10-C11	$-177.50(14)$	C9-C10-C11-C12	$-1.5(2)$
C10-C11-C12-C14	$1.0(3)$	C10-C9-C13-C14	$0.5(2)$
C8-C9-C13-C14	$178.67(14)$	C11-C12-C14-C13	$0.3(3)$
C9-C13-C14-C12	$-1.0(2)$		

Anisotropic atomic displacement parameters (\AA^{2}) for dimer 2.

The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k a^{*} b^{*} U_{12}\right]$

	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	\mathbf{U}_{12}
O1	$0.0384(5)$	$0.0273(5)$	$0.0166(4)$	$0.0004(3)$	$-0.0003(4)$	$0.0053(4)$
O2	$0.0285(4)$	$0.0207(4)$	$0.0261(4)$	$-0.0007(3)$	$-0.0024(3)$	$-0.0045(4)$
O3	$0.0331(5)$	$0.0342(5)$	$0.0293(5)$	$0.0031(4)$	$0.0054(4)$	$0.0084(4)$
O4	$0.0397(5)$	$0.0260(5)$	$0.0265(5)$	$-0.0028(4)$	$0.0002(4)$	$0.0047(4)$
N1	$0.0286(5)$	$0.0192(5)$	$0.0167(4)$	$-0.0013(4)$	$0.0006(4)$	$-0.0055(4)$
N2	$0.0288(5)$	$0.0165(5)$	$0.0225(5)$	$-0.0008(4)$	$-0.0008(4)$	$-0.0045(4)$
N3	$0.0243(5)$	$0.0262(5)$	$0.0268(5)$	$0.0016(4)$	$-0.0003(4)$	$-0.0007(4)$
C1	$0.0467(8)$	$0.0252(6)$	$0.0268(6)$	$0.0086(5)$	$0.0067(6)$	$0.0033(6)$
C2	$0.0337(7)$	$0.0226(6)$	$0.0166(5)$	$-0.0001(4)$	$0.0021(5)$	$0.0025(5)$
N4	$0.0252(5)$	$0.0220(5)$	$0.0216(5)$	$0.0050(4)$	$0.0036(4)$	$0.0000(4)$
C4	$0.0290(6)$	$0.0201(5)$	$0.0181(5)$	$0.0020(4)$	$0.0009(5)$	$-0.0035(5)$
C5	$0.0220(5)$	$0.0147(5)$	$0.0199(5)$	$0.0018(4)$	$-0.0014(4)$	$0.0019(4)$
C6	$0.0297(6)$	$0.0226(6)$	$0.0177(5)$	$-0.0017(4)$	$0.0032(5)$	$0.0000(5)$
C7	$0.0246(6)$	$0.0225(6)$	$0.0181(5)$	$-0.0001(4)$	$0.0033(4)$	$-0.0040(5)$
C8	$0.0489(8)$	$0.0296(7)$	$0.0218(6)$	$0.0022(5)$	$-0.0080(6)$	$0.0057(6)$
C9	$0.0306(6)$	$0.0310(7)$	$0.0196(5)$	$0.0037(5)$	$0.0002(5)$	$-0.0032(5)$
C10	$0.0352(7)$	$0.0396(8)$	$0.0322(7)$	$0.0017(6)$	$-0.0049(6)$	$0.0048(6)$
C11	$0.0448(9)$	$0.0593(10)$	$0.0338(8)$	$0.0025(7)$	$-0.0159(7)$	$0.0022(8)$
C12	$0.0548(10)$	$0.0486(9)$	$0.0267(7)$	$-0.0044(6)$	$-0.0082(7)$	$-0.0093(8)$
C13	$0.0517(9)$	$0.0325(7)$	$0.0269(7)$	$0.0001(6)$	$-0.0096(6)$	$0.0045(7)$
C14	$0.0644(10)$	$0.0339(8)$	$0.0316(7)$	$-0.0054(6)$	$-0.0062(7)$	$0.0014(7)$

	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	\mathbf{U}_{23}	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
C15	$0.0293(7)$	$0.0395(8)$	$0.0361(8)$	$-0.0024(6)$	$-0.0006(6)$	$-0.0068(6)$
C3	$0.0332(7)$	$0.0317(7)$	$0.0423(8)$	$-0.0036(6)$	$0.0092(6)$	$0.0027(6)$

Hydrogen atomic coordinates and isotropic atomic displacement parameters (\AA^{2}) for Dimer 2.

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U (e q)}$
H10	$0.1592(14)$	$0.2291(14)$	$0.5109(5)$	$0.034(4)$
H11	$0.5182(15)$	$0.4997(14)$	$0.4334(6)$	$0.036(4)$
H14	0.2933	0.7669	0.3578	0.049
H13	0.3866	0.6617	0.3405	0.049
H1	0.4231	0.7373	0.3864	0.049
H4A	0.3209	0.3518	0.4365	0.027
H4B	0.1869	0.4219	0.4296	0.027
H21	0.0753	0.4134	0.5748	0.028
H20	0.1992	0.4995	0.5754	0.028
H5	0.3740	0.2596	0.6669	0.04
H6	0.2330	0.2336	0.6884	0.04
H22	0.4512	0.2459	0.7490	0.043
H23	0.5002	0.3487	0.8177	0.055
H2	0.4142	0.5369	0.8313	0.052
H3	0.2166	0.5154	0.7090	0.044
H4	0.2727	0.6209	0.7768	0.052
H8	-0.0442	0.3170	0.5238	0.052
H7	-0.0417	0.2301	0.4792	0.052
H9	-0.0282	0.3711	0.4721	0.052
H17	0.4719	0.3402	0.3852	0.054
H16	0.6037	0.4066	0.3711	0.054
H15	0.4731	0.4333	0.3425	0.054

4. Analytical HPLC chromatograms of peptoids 1-6 and monomer A

Purity of each final product was confirmed by analytical RP-HPLC using a $150 \times 4.6 \mathrm{~mm}$ Nucleodur C18 column (Macherey-Nagel) ($3 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 125 \mathrm{~mm}, 110 \AA \AA$) and a gradient of $5-95 \%$ of ACN in water ($0.1 \% \mathrm{TFA}$) over 7 min with a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$. Absorbance signal at 214 nm

peptoid	retention time (min)	Purity (\%)
1	8.18	100
2	7.71	99
3	7.57	98
4	7.55	93
5	7.55	92
6	7.84	98

Compound 1

Signal 1: DAD1 A, Sig=214, 4 Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	Area \%
1	8.181		0.088	014.043	93.6191	0.00

Compound 2

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.905	MM	0.0606	130.27127	35.82507	1.2112
2	7.713		0.1363	. 06252 e 4	299.44299	98.7888

Compound 3

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	6.979		0.0655	128.82013	32.78517	2.2325
2	7.571		0.1222	5641.36621	769.24115	97.7675

Compound 4

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.056		0.0689	161.01077	38.94917	3.0684
2	7.546		0.1153	4886.63672	706.31873	93.1262
3	7.862		0.1166	130.91669	18.71139	2.4949
4	8.209	MM	0.0774	68.76509	14.80008	1.3105

Compound 5

Signal 1: DAD1 A, Sig=214,4 Ref=360,100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	7.550		0.1530	1.93488 e 4	2108.26660	92.1447
2	7.807		0.1862	685.95123	61.41019	3.2667
3	8.527		0.0966	400.98114	69.19804	1.9096
4	9.408		0.0773	562.56024	121.30586	2.6791

Compound 6

Signal 1: DAD1 A, Sig=214, 4 Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.852		0.1063	7811.45703	1224.27087	97.8383
2	8.126		0.1506	79.05353	8.75064	0.9901
3	8.412		0.1017	93.53758	15.32347	1.1716

Monomer A

Signal 1: DAD1 A, Sig=214, $4 \operatorname{Ref}=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	6.063	MM	0.0747	161.83788	36.13095	2.4670
2	6.397	MM	0.1142	5904.72949	861.72980	90.0087
3	6.957	MM	0.0715	368.17004	85.81860	5.6122
4	7.883	MM	0.0844	125.43545	24.76782	1.9121

5. NMR spectra

Monomer 1 (Ac-NNMe-OBn)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 8 \mathrm{mM}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CD}_{3} \mathrm{CN}, 8 \mathrm{mM}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{C}_{6} \mathrm{D}_{6}, 8 \mathrm{mM}$

${ }^{1} \mathrm{H}$ NMR, DMSO-d6, 8 mM

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CD}_{3} \mathrm{OD}, 8 \mathrm{mM}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{D}_{2} \mathrm{O}, 8 \mathrm{mM}$

2D HSQC NMR, $\mathrm{CDCl}_{3}, 5 \mathrm{mM}$

2D HMBC NMR, $\mathrm{CDCl}_{3}, 5 \mathrm{mM}$

Portions of 2D NOESY spectrum of peptoid 1 in DMSO-d6 showing correlations between protons H 2 and H 4 and H 3 and H 4 in the predominant trans-conformation and between protons H 3 and H 2 in the minor cis-conformation

Dimer 2 (Ac-(NNMe) $\left.\mathbf{2}_{2}-\mathrm{OBn}\right)$
${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 8 \mathrm{mM}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CD}_{3} \mathrm{CN}, 8 \mathrm{mM}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{C}_{6} \mathrm{D}_{6}, 8 \mathrm{mM}$

${ }^{1} \mathrm{H}$ NMR, DMSO-d6, 8 mM

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CD}_{3} \mathrm{OD}, 8 \mathrm{mM}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{D}_{2} \mathrm{O}, 8 \mathrm{mM}$

2D HSQC NMR, $\mathrm{CDCl}_{3}, 5 \mathrm{mM}$

2D HMBC NMR, $\mathrm{CDCl}_{3}, 5 \mathrm{mM}$

2D NOESY spectrum of peptoid 2 in DMSO-d6, showing a major conformer in the trans-trans conformation. The NOESY correlation are shown by colored squares in the spectrum and by colored arrows in the structure drawing.

Trimer 3 (Ac-(NNMe)3-OBn)

${ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}, 8 \mathrm{mM}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CD}_{3} \mathrm{CN}, 8 \mathrm{mM}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{C}_{6} \mathrm{D}_{6}, 8 \mathrm{mM}$

${ }^{1} \mathrm{H}$ NMR, DMSO-d6, 8 mM

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CD}_{3} \mathrm{OD}, 8 \mathrm{mM}$

${ }^{1} \mathrm{H}$ NMR, $\mathrm{D}_{2} \mathrm{O}, 8 \mathrm{mM}$

${ }^{13} \mathrm{C}$ NMR, CDCl3

2D HSQC NMR, $\mathrm{CDCl}_{3}, 5 \mathrm{mM}$

2D HMBC NMR, $\mathrm{CDCl}_{3}, 5 \mathrm{mM}$

2D NOESY spectrum of peptoid 3 in DMSO-d6 (5 mM)

Tetramer 4 (Ac-(NNMe) ${ }_{4}$-OBn)

${ }^{1} \mathrm{H}$ NMR, $\mathrm{CD}_{3} \mathrm{OD}, 8 \mathrm{mM}$

${ }^{1}$ H NMR, DMSO-d6, 8 mM

${ }^{13} \mathrm{C}$ NMR, CDCl_{3}

2D HSQC NMR, $\mathrm{CDCl}_{3}, 8 \mathrm{mM}$

2D HMBC NMR, $\mathrm{CDCl}_{3}, 8 \mathrm{mM}$

Pentamer 5 (Ac-(NNMe) $\left.)_{5}-\mathrm{OBn}\right)$

${ }^{1} \mathrm{H}$ NMR, CD_{3} OD, 8 mM

${ }^{1} \mathrm{H}$ NMR, DMSO-d6, 8 mM

${ }^{13} \mathrm{C}$ NMR, CDCl_{3}

2D HSQC NMR, $\mathrm{CDCl}_{3}, 8 \mathrm{mM}$

2D HMBC NMR, $\mathrm{CDCl}_{3}, 8 \mathrm{mM}$

Hexamer 6 (Ac-(NNMe)6-OBn)

${ }^{1} \mathrm{H}$ NMR, DMSO-d6, 15 mM

2D HSQC NMR, DMSO-d6, 15 mM

2D HMBC NMR, DMSO-d6, 15 mM

6. Variable concentration study

Figure S1: NMR chemical shift of the NH proton of the side chain of monomer A in CDCl_{3} at room temperature, as a function of the logarithm of concentration.

Figure S2 : NMR chemical shift of the NH proton of the side chain of trimer 3 in CDCl_{3} at room temperature, as a function of the logarithm of concentration.

7. Infra-red spectra

Monomer 1

Dimer 2

Trimer 3

Tetramer 4

Pentamer 5

8. Computation

All computational studies were performed using Gaussian 16. All structures were optimized using B3LYP functional with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set and using tight convergence criteria (opt=tight) in chloroform (scrf=(solvent=chloroform)). Frequency calculations were performed at the same level of the theory to confirm that the obtained structures were a stationary point (no imaginary frequencies). The model structures were generated by editing the X-ray crystal structure of dimer 2 which exist in a repeating (pp) conformation. The C-terminal benzyl ester was switch to a dimethylamide end-cap. For the models featuring alternating conformations (pm), mirror images conformations were generated.
a) Geometry optimization of monomer model Ac-NNMe-NMe ${ }_{2}$

Table S1. Dihedral angles, N..O distance and NHO angle measured in the model monomer

conformation	$\omega\left({ }^{\circ}\right)$	$\varphi\left({ }^{\circ}\right)$	$\psi\left({ }^{\circ}\right)$	$\chi 1\left(^{\circ}\right)$	$\mathrm{d} \mathrm{N} \ldots . \mathrm{O}(\AA)$	$\mathrm{NH} . . . \mathrm{O}\left({ }^{\circ}\right)$
p	-173.71	101.36	-175.71	124.59	2.88	125.71

aThe conformation is denoted p when the φ angle is positive.

Figure S3. Relative energy for relaxed potential energy surface scan about the ω dihedral angle with 35 steps of 10°.

Figure S4. Relaxed potential energy scan was about the $\chi 1$ dihedral angle with 35 steps of 10° with freeze coordinate for dihedral angle $\mathrm{N}-\mathrm{N}(-\mathrm{H})-\mathrm{C}$ to avoid nitrogen pyramidal inversion.

b) Geometry optimization of dimer model Ac-(NNMe) ${ }_{2}$ - NMe_{2}

Table S2. Dihedral angles, N..O distance and NHO angle measured in the dimer models (pp) and (pm).

conformationa,b	residue	$\omega\left({ }^{\circ}\right)$	$\varphi\left({ }^{\circ}\right)$	$\psi\left({ }^{\circ}\right)$	$\chi 1\left({ }^{\circ}\right)$	D N...O	NH...O($\left.{ }^{\circ}\right)$	relative energy $(\mathrm{kcal} / \mathrm{mol})$
	i	-173.70	97.70	-173.59	125.60	2.93	124.36	0
	$\mathrm{i}+1$	-173.22	101.62	-176.48	123.49	2.89	124.93	0
pm	i	-175.06	107.94	177.71	-114.7	2.91	125.60	0.65
	$\mathrm{i}+1$	175.54	-104.68	176.11	112.88	2.09	126.35	0.0

 negative.

c) Geometry optimization of hexamer model Ac-(NNMe) ${ }_{6}-\mathrm{NMe}_{2}$

Table S3. Dihedral angles, N.. O distance and NHO angle measured in the hexamer models (p$)_{6}$ and (pm$)_{3}$.

conformation ${ }^{\text {a,b }}$	residue	$\omega\left({ }^{\circ}\right)$	$\varphi\left(^{\circ}\right)$	$\psi\left({ }^{\circ}\right)$	$\chi 1\left({ }^{\circ}\right)$	$\begin{gathered} \mathrm{d} \mathrm{~N} \\ \mathrm{O} \end{gathered}$	$\begin{gathered} \mathrm{NH} \\ \mathrm{O}\left(^{\circ}\right) \end{gathered}$	relative energy (kcal/mol)
$(\mathrm{p})_{6}$	i	-173.54	97.97	-173.40	-111.24	2.92	124.78	0
	i+1	-173.44	100.96	-173.06	-113.98	2.92	124.93	
	i+2	-173.32	101.23	-174.42	-113.78	2.92	124.74	
	i+3	-172.77	100.17	-173.64	-113.21	2.92	124.66	
	i+4	-172.99	98.95	-173.46	-112.87	2.93	123.97	
	i+5	-172.67	101.02	-176.69	-112.56	2.89	124.80	
$(\mathrm{pm})_{3}$	I	-175.51	111.45	177.77	-116.76	2.89	126.61	2.9
	i+1	177.22	-110.39	-179.84	115.05	2.88	126.83	
	i+2	-176.58	109.71	178.91	-114.59	2.88	126.61	
	i+3	175.93	-109.46	179.77	114.66	2.88	126.84	
	i+4	-175.14	104.56	-179.82	-112.10	2.90	125.63	
	i+5	173.98	-103.92	173.71	112.98	2.86	126.88	

 negative.

9. Transmission Electron Microscopy (TEM)

TEM images were acquired using a JEOL 2100Plus TEM microscope (Tokyo, Japan) operating at 200 kV . Particles contained in a $1 \mathrm{wt} \%$ solution of dimer 2 in water were collected onto 400 -mesh Cu electron microscopy grid supported with carbon-coated Formvar (Pelanne Instruments, Toulouse, France) by centrifugation at 20.000 g for 30 min . The grids were individually stained with $2 \%(\mathrm{w} / \mathrm{v})$ uranyl acetate for 30 s , after which they were rinsed with ultrapure water and immediately dried with absorbent paper.

Figure S5. Additional TEM images of dimer 2.

